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Abstract

Tool presentation: Polyhedra are a common set representation with widespread appli-
cations in many areas of research, including convex geometry, reachability analysis, and
invariant set computation. Their popularity stems from a tight relation to linear program-
ming. Apart from some basic set operations with analytic formulae, the implementation
of many polyhedral set operations in tools is not well documented. For this reason, we
describe the evaluation of common set operations on polyhedra, including their runtime
complexity, and provide an overview of their implementation as a dedicated class in the
MATLAB tool Continuous Reachability Analyzer (CORA) for set-based computing. In
particular, we highlight the handling of unbounded and degenerate sets. Finally, we com-
pare our implementation to the popular multi-parametric toolbox.

1 Introduction

Polyhedra are elementary sets [1], in part owing to the intuitive nature of their two most popular
representations: the intersection of halfspaces and the convex hull of points. They appear in
many areas of numerical analysis, e.g., as constraint sets in convex optimization problems
[2], as template polyhedra in reachability analysis [3, 4, 5], and as robust positively/control
invariant sets [6, 7]. Many of these applications only require specific polyhedral operations,
which can be implemented directly—yet, some libraries have been written to provide operations
for general use. Examples include HyPro [8], written in C++, the Parma Polyhedra Library
[9], written in C++, and the popular multi-parametric toolbox [10], written in MATLAB and
C. Since the latter toolbox is no longer maintained, we have implemented a polytope class for
the Continuous Reachability Analyzer (CORA) [11], which facilitates using polytopes among
other set representations for reachability analysis [12], verification [13], set-based observers [14],
and system identification [15].

In Section 2, we define the halfspace representation and the vertex representation. Then,
we introduce the object class implemented in CORA in Section 3, which also contains several
set properties to improve computational efficiency. Afterward in Section 4, we define all imple-
mented operations, including conversions between representations, predicates, as well as unary
and binary set operations. Our numerical evaluation in Section 5 compares our implementation
with the multi-parametric toolbox [10].
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2 Preliminaries

Let us first introduce some notation: Vectors are denoted by lowercase letters, matrices by
uppercase letters, and sets by calligraphic letters. For a vector v ∈ Rn, v(i) denotes its ith
coordinate; for a matrix M ∈ Rm×n, we use M(i,·) and M(·,j) to denote the ith row and

jth column, respectively. The transposes of a vector and matrix are written as v⊤ and M⊤,
respectively. Comparisons between two vectors, such as v1 ≤ v2, are evaluated element-wise.
We use 0 and 1 for an all-zero or all-ones vector or matrix of proper size, and In to denote the
n-dimensional identity matrix. The canonical basis vector in the ith dimension is written as
ei ∈ Rn. The closed Euclidean ball around the origin with radius ε > 0 is denoted by Bε. For a
matrix M ∈ Rm×n, span(M) ⊆ Rm is the set {Mx |x ∈ Rn}, and span(M)⊥ is its orthogonal
complement, i.e., the set {y ∈ Rm | ∀x ∈ Rn : y⊤Mx = 0}. The symbols ⊤ and ⊥ denote true
and false, respectively.

In general, the intersection of halfspaces results in a polyhedron, which is not necessarily
bounded. If boundedness is ensured, we call the resulting set a polytope.

Definition 1 (H-polyhedra and H-polytopes [1, Sec. 1.1]). A polyhedron P ⊆ Rn in halfspace
representation (or H-polyhedron) is described using h ∈ N linear inequalities defined by the
matrix A ∈ Rh×n and the vector b ∈ Rh :

P :=
{
x ∈ Rn

∣∣ Ax ≤ b
}
.

We use the shorthand P = ⟨A, b⟩H . If P is bounded, it is called a polytope in halfspace repre-
sentation (or H-polytope). □

We use the convention that the absence of constraints implies P = Rn; this can occur, e.g.,
following the removal of redundant constraints if all constraints are redundant (for instance,
when A = 0 and b = 0, the constraint may be removed, as it is trivially satisfied). Polytopes
can equivalently be defined using points.

Definition 2 (V-polytopes [1, Sec. 1.1]). A polytope P ⊂ Rn in vertex representation is the
convex combination of the points {v1, . . . , vm} ∈ Rn:

P :=

{ m∑
i=1

β(i) vi

∣∣∣∣ m∑
i=1

β(i) = 1, β ≥ 0

}
.

We use the shorthand P = ⟨[v1 . . . vm ]⟩V and non-redundant points are called vertices. □

Please note that the set of points {v1, . . . , vm} may be empty, resulting in an empty polytope
P = ∅; this can occur, e.g., through the conversion of an H-polytope with infeasible constraints
to a V-polytope.

Recently, novel representations of polytopes have been proposed [16, 17], which are related
to the generator representation of polynomial zonotopes [18, Def. 1]. However, these represen-
tations are outside of the scope of this work.

We will also analyze degenerate polyhedra and polytopes.

Definition 3 (Degenerate and Non-Degenerate Sets). A set S ⊆ Rn is non-degenerate if its
topological interior is non-empty, otherwise it is degenerate. Equivalently, a set S is degenerate
if and only if every point in S lies on the (topological) boundary:

∀s ∈ S,∀ε > 0: s⊕ Bε ̸⊆ S.

Please note that we use the convention that empty sets are degenerate. □
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Table 1: Effect of binary set operations on the implemented set properties. E: empty, NE:
non-empty, D: degenerate, ND: non-degenerate, B: bounded, NB: unbounded, –: unknown. For
set operations that commute, we skip the second variant using ‘·’ to avoid clutter.

MS S is ...
E NE D ND B NB

M is ...
invertible E NE D ND B NB
singular E NE, D D NE, D B –

S1 ⊕ S2 S2 is ...
E NE D ND B NB

S1 is ...

E E E E E E E
NE E NE – ND – NB
D E · – ND – NB
ND E · · ND ND ND, NB
B E · · · B NB
NB E · · · · NB

S1 ⊖ S2 S2 is ...
E NE D ND B NB

S1 is ...

E ND, NB E E E E E
NE ND, NB – – – – –
D ND, NB – – E – –
ND ND, NB – – – – –
B ND, NB B B B B E
NB ND, NB – – – – –

S1 × S2 S2 is ...
E NE D ND B NB

S1 is ...

E E E E E E E
NE E NE D NE – NB
D E · D D D, B D, NB
ND E · · ND – NB
B E · · · B –
NB E · · · · NB

conv (S1,S2) S2 is ...
E NE D ND B NB

S1 is ...

E E E E E E E
NE E NE – ND, NE – NB
D E · – ND – NB
ND E · · ND ND ND, NB
B E · · · B NB
NB E · · · · NB

S1 ∩ S2 S2 is ...
E NE D ND B NB

S1 is ...

E E E E E E E
NE E – D – B –
D E · D D D, B D
ND E · · – B –
B E · · · B B
NB E · · · · –
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3 Implementation in CORA

The constructor of our object class is versatile, realizing an instantiation using vertices (V ),
inequality constraints (A, b), equality constraints (Ae, be), or a combination of inequality and
equality constraints (A, b,Ae, be). This design choice ensures that the class can handle a wide
range of definitions.
Our implementation stores a list of set properties to enhance computational efficiency, as they
might otherwise be recalculated numerous times during the execution of complex operations:

• Emptiness: Describes whether the polytope is the empty set.

• Non-Degeneracy: Describes whether the polytope is non-degenerate or degenerate, see
Definition 3.

• Boundedness: Describes whether the polyhedron is bounded.

• Minimal Representation: Describes whether the polytope is represented by a minimal
amount of halfspaces or points for the halfspace and vertex representations, respectively.

Please note that these properties result from certain set operations, as shown in Table 1 for bi-
nary set operations. In addition, it holds in general that a) empty sets are bounded, degenerate,
and in minimal representation, b) non-degenerate sets are non-empty, and c) unbounded sets
are non-empty. Cases with more than two properties can be analyzed by using the conjunction
over all pairs of properties. For example, the Cartesian product of a non-empty set S1 and a
degenerate, unbounded set S2 is a degenerate and unbounded set S = S1 × S2.

4 Polyhedral Operations

This section presents an overview of all implemented operations on polytopes. In Section 4.1, we
discuss the conversion from halfspace to vertex representation and vice versa, known as vertex
and facet enumeration, respectively. Next, we show how to evaluate predicates on polytopes,
e.g., set equality, in Section 4.2. Finally, in Section 4.3, we consider set operations, including the
linear map, Minkowski sum, or support function evaluation, among others. Each operation is
first defined for general sets S ⊆ Rn, see Tables 2 and 3, and then evaluated for H-polytopes and
V-polytopes. Please note that we only consider binary operations for computational complexity
analysis. The time complexity for evaluating a linear program with p variables and q constraints
is denoted by LP(p, q), which is polynomial in p and q [19]. Moreover, we formulate feasibility
checks with linear constraints as linear programs.

4.1 Minimal Representation and Conversions

Redundancy in the context of polytopes refers to the presence of superfluous constraints or
points whose inclusion does not alter the set. However, a large number of redundancies may
heavily impact the performance of certain set operations.

Minimal halfspace representation Given an H-polytope, one can immediately see that its
jth halfspace is redundant if and only if the support function—see Table 3 for a definition—
of the polytope in the direction of the corresponding normal vector remains unchanged after
removing the halfspace:
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⟨A, b⟩H ≡ ⟨A
∗, b∗⟩H ⇔ ρ

(
⟨A, b⟩H , A⊤

(j,·)

)
= ρ

(
⟨A∗, b∗⟩H , A⊤

(j,·)

)

with A∗ =



A(1,·)
...

A(j−1,·)
A(j+1,·)

...
A(h,·)


, b∗ =



b(1)
...

b(j−1)

b(j+1)

...
b(h)


.

(1)

To obtain a minimal representation, one has to check the above condition for each halfspace.
If the jth halfspace is redundant, we can further speed up the computation using the sup-
port vector ν of ⟨A∗, b∗⟩H in the direction of the jth normal vector: Since ν is also a vertex
of the polytope ⟨A, b⟩H , all halfspaces k ∈ {1, . . . , h}, k ̸= j are non-redundant, for which
A(k,·)ν = b(k) holds, because the vertex ν lies on the boundary of those halfspaces. The compu-
tational complexity for (1) is bounded by O(h LP(n, h)) since each support function evaluation
corresponds to a linear program, see (33). Please note that (1) works regardless whether the
polyhedron is bounded or degenerate.

For H-polytopes with many halfspaces, one can also use further heuristics to determine
redundant halfspaces. For instance, one can remove all halfspaces that strictly contain the
interval hull of the polytope, which is computed using 2n support function evaluations [10].
This can significantly reduce the computational effort if the number of removed halfspaces is
larger than 2n, since checking whether a halfspace contains the interval hull is much faster than
evaluating the support function in the direction of the normal vector of that halfspace.

Minimal vertex representation For V-polytopes, one can determine whether the jth point
is redundant by checking its containment in the V-polytope composed of all other points:

⟨[v1 . . . vm ]⟩V ≡ ⟨[v1 . . . vj−1 vj+1 . . . vm ]⟩V
⇔ vj ∈ ⟨[v1 . . . vj−1 vj+1 . . . vm ]⟩V .

(2)

The process is applied to each point until a minimal representation is obtained. Conveniently,
we use the MATLAB function convhulln (·)1, which implements the Quickhull algorithm [20]
to efficiently check the redundancy of each point, with a polynomial complexity2 of O(mr fr)
with respect to the number of processed points r, where fr is the maximum number of facets

for r vertices, which is O(r⌊
n
2 ⌋/⌊n2 ⌋!) according to [20]. For degenerate V-polytopes, we first

restrict the set to its affine hull, see (20) and Algorithm 2, and execute the Quickhull algorithm
in that subspace, followed by an embedding into the original space. Specifically, suppose we
are given a V-polytope P = ⟨[v1 . . . vm ]⟩V and a matrix B ∈ Rn×r representing a basis of the
affine hull of P with minimal rank r, and c a point in P (for instance, this can be the arithmetic
mean over all vertices). Then we know that any x ∈ P can be represented as x = By + c for
some y ∈ Rr. If B = UΣV ⊤ is a singular value decomposition of B, since r < n and B has full
rank by construction, it follows that Σ has the form

Σ =

[
D
0

]
1See https://www.mathworks.com/help/matlab/ref/convhulln.html
2Please note that the conditions for balanced execution [20, Def. 3.1] must hold.
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Table 2: Definitions of unary and binary predicates using convex sets S,S1,S2 ⊂ Rn.

Predicate Definition

Containment S1 ⊆ S2 ↔ ∀s1 ∈ S1 : s1 ∈ S2
Set equality S1 ≡ S2 ↔ S1 ⊆ S2 ∧ S2 ⊆ S1
Emptiness empty (S)↔ ∀x ∈ Rn : x ̸∈ S
Intersection intersects (S1,S2)↔ ∃s ∈ Rn : s ∈ S1 ∧ s ∈ S2
Boundedness bounded (S)↔ ∀ℓ ∈ Rn,∃a ∈ R : maxs∈S ℓ⊤s ≤ a

Degeneracy degenerate (S)↔ ∀s ∈ S,∀ε > 0: s⊕ Bε ̸⊆ S

for some invertible D ∈ Rr×r. Since U and V are also invertible, it follows that the polytope
P ′ = ⟨[M(v1 − c) . . .M(vm − c)]⟩V ⊂ Rr with M =

[
Ir 0

]
U⊤ is non-degenerate, and P =

M⊤P ′ + c. Consequently, it suffices to use the Quickhull algorithm on P ′, and then embed any
vertex v′ of P ′ into Rn by means of v = M⊤v′ + c.

Conversion between halfspace and vertex representations For the conversions between
the halfspace and the vertex representation, we refer to [21]. The aforementioned Quickhull
algorithm convhulln (·) in MATLAB also returns a list of sets of vertices making up each
facet, thus, providing us with the halfspace representation, through, e.g., the well-known Gram-
Schmidt algorithm.

For the solution of the vertex enumeration problem, we use a primal-dual approach where
halfspaces in the primal space are mapped to vertices in the dual space [1, Ch. 2.3]. By applying
the Quickhull algorithm convhulln (·) to these points, the facets of the resulting hull in the
dual space directly yield the vertices of the original primal polytope. Degenerate polytopes
are first restricted to their affine hull, see (20) and Algorithm 2, which facilitates the use of
primal-dual methods for the conversion. Concretely, given a matrix B ∈ Rn×r representing a
basis of the affine hull of the polytope P = ⟨A, b⟩H with minimal rank r, and a point c ∈ P, we
know that any point x ∈ P can be represented as x = By + c for some y ∈ Rr. Therefore, to
compute the vertices of a degenerate polytope P, it suffices to compute the vertices v′1, . . . , v

′
m

of P ′ = ⟨AB, b −Ac⟩H , which is non-degenerate by definition of B. The vertices of P are then
given by vi = Bv′i + c with i = 1, . . . ,m, since P = BP ′ + c. In the unbounded case, we return
an error when the vertex enumeration is called.

4.2 Predicates

We have implemented the predicates defined in Table 2.

Containment Whether a V-polytope contains another V-polytope can be formalized as

〈[
v
(1)
1 . . . v(1)m1

]〉
V
⊆

〈[
v
(2)
1 . . . v(2)m2

]〉
V
←

{
⊤ if ∀i ∈ {1, . . . ,m1} : v(1)i ∈

〈[
v
(2)
1 . . . v

(2)
m2

]〉
V

⊥ otherwise,

(3)
where a single point v is contained if and only if the following linear program is feasible:

min
β∈Rm2

1 s.t. v =
[
v
(2)
1 . . . v(2)m2

]
β,

m2∑
k=1

β(k) = 1, β ≥ 0. (4)
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This results in a total time complexity of O(LP(m2, n)) for the point containment, and O(m1 ·
LP(m2, n)) for the V-polytope in V-polytope containment.

The containment of an H-polytope in another H-polytope can be determined using support
function evaluations:

⟨A1, b1⟩H ⊆ ⟨A2, b2⟩H ←

{
⊤ if ∀j ∈ {1, . . . , h1} : ρ

(
⟨A1, b1⟩H , A2(j,·)

)
≤ b2(j)

⊥ otherwise.
(5)

The complexity of this operation is bounded by O(h2 LP(n, h1)) since each support function
evaluation is a linear program. The containment of a V-polytope in an H-polytope simplifies
to a matrix-vector product, which can be evaluated in O(mhn):

⟨[v1 . . . vm ]⟩V ⊆ ⟨A, b⟩H ←

{
⊤ if ∀j ∈ {1, . . . ,m} : Avj ≤ b

⊥ otherwise,
(6)

where the inequality must hold element-wise.
Checking the containment of an H-polyhedron in a V-polytope is NP-hard [22]. Therefore,

either representation is converted into the other so that (3) or (5) can be used. Note that one
can immediately disprove containment if the H-polyhedron is known to be unbounded.

Set equality A V-polytope is equal to another V-polytope if and only if each point is either
also contained in the set of points of the other polytope or that point is redundant, see (2):

〈[
v
(1)
1 . . . v(1)m1

]〉
V
≡

〈[
v
(2)
1 . . . v(2)m2

]〉
V
←



⊤ if ∀j ∈ {1, . . . ,m1} ∃k ∈ {1, . . . ,m2} : v(1)j = v
(2)
k

∨ v(1)j ∈
〈
[v

(1)
1 . . . v

(1)
j−1 v

(1)
j+1 . . . v

(1)
m1 ]

〉
V

∧ ∀k ∈ {1, . . . ,m2} ∃j ∈ {1, . . . ,m1} : v(2)k = v
(1)
j

∨ v(2)k ∈
〈
[v

(2)
1 . . . v

(2)
k−1 v

(2)
k+1 . . . v

(2)
m2 ]

〉
V

⊥ otherwise,

(7)
whose evaluation is (coarsely) upper bounded by O(m1m2n).

We determine set equality between two non-degenerate H-polytopes by Algorithm 1: For
each normalized constraint in A1 of P1, we check whether there exists an equivalent constraint
in P2 (condition in line 3). If this is not the case, the constraint A1 must be redundant for
set equality to hold, which can be checked using the support function (condition in line 4), as
shown in (1). We then perform the same checks looping over all constraints in P2 (line 8).
If the conditions in lines 3 and 4 are never violated, it holds that P1 ≡ P2. The complexity
of Algorithm 1 is bounded by O(h2LP(n, h1) + h1LP(n, h2)), which follows from evaluating the
maximum number of possible support functions in line 4.

For degenerate H-polytopes, we evaluate the mutual containment using (5), yielding a com-
plexity of O(h2LP(n, h1) + h1LP(n, h2)):

⟨A1, b1⟩H ≡ ⟨A2, b2⟩H ←

{
⊤ if ⟨A1, b1⟩H ⊆ ⟨A2, b2⟩H ∧ ⟨A2, b2⟩H ⊆ ⟨A1, b1⟩H
⊥ otherwise,

(8)

which is faster than restricting the polytopes to their affine hull using Algorithm 2 and then
checking for set equality with Algorithm 1.

To check whether a V-polytope and an H-polytope represent the same set, we convert
either set into the representation of the other and then execute either (7), Algorithm 1, or (8)
accordingly.
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Algorithm 1 Set equality check for two non-degenerate H-polytopes

Require: H-polytopes P1 = ⟨A1, b1⟩H ,P2 = ⟨A2, b2⟩H in minimal halfspace representation
Ensure: P1 ≡ P2

1: ∀i ∈ {1, 2} ∀j ∈ {1, ..., hi} : Ai(j,·) ←
Ai(j,·)

∥Ai(j,·)∥2
, bi(j) ←

bi(j)
∥Ai(j,·)∥2

▷ Row-wise normalization

2: for j ← 1 to h1 do
3: if

(
∄k ∈ {1, ..., h2} : A1(j,·) = A2(k,·) ∧ b1(j) = b2(k)

)
4: ∧

(
ρ
(
⟨A∗

1, b
∗
1⟩H , A⊤

1(j,·)

)
= b1(j)

)
then ▷ A∗

1, b
∗
1 as in (1)

5: return ⊥
6: end if
7: end for
8: Repeat lines 2-7 with switched indices 1 and 2
9: return ⊤

Emptiness V-polytopes are empty if and only if the set of points {v1, ..., vm} is empty. For
H-polytopes, we use linear programming to check whether the inequality constraints Ax ≤ b
contain a point, which can be rewritten using Farkas’ Lemma:

empty (⟨A, b⟩H)←

{
⊤ if (10) is feasible with y∗ < 0

⊥ otherwise,
(9)

with
y∗ = min

y∈Rh
b⊤y s.t. A⊤y = 0, y ≥ 0. (10)

The complexity is O(LP(h, n)).

Intersection The intersection of two V-polytopes is checked as follows:

intersects
(〈[

v
(1)
1 . . . v(1)m1

]〉
V
,
〈[

v
(2)
1 . . . v(2)m2

]〉
V

)
←

{
⊤ if (12) is feasible

⊥ otherwise,
(11)

where the linear program in (12) checks whether there exist two vectors β1 ∈ Rm1 , β2 ∈ Rm2

fulfilling the conditions in Definition 2 and resulting in the same point:

min
β1∈Rm1 , β2∈Rm2

1

s.t.
[
v
(1)
1 . . . v(1)m1

]
β1 =

[
v
(2)
1 . . . v(2)m2

]
β2,

m1∑
j=1

β1(j) = 1, β1 ≥ 0,

m2∑
k=1

β2(k) = 1, β2 ≥ 0.
(12)

The complexity is O(LP(m1 +m2, n+m1 +m2)).
Since H-polytopes are defined as the intersection of halfspaces, see Definition 1, we can

directly use (9) to check for intersection:

intersects (⟨A1, b1⟩H , ⟨A2, b2⟩H)←

{
⊥ if empty (⟨A1, b1⟩H ∩ ⟨A2, b2⟩H)

⊤ otherwise,
(13)

which is a single linear program that can be evaluated in O(LP(h1 + h2, n)).
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For the intersection check of a V-polytope and an H-polytope, we have

intersects (⟨[v1 . . . vm ]⟩V , ⟨A, b⟩H)←

{
⊤ if (15) is feasible

⊥ otherwise,
(14)

where

min
x∈Rn, β∈Rm

1 s.t. Ax ≤ b, [v1 . . . vm]β = x,

m∑
j=1

β(j) = 1, β ≥ 0 (15)

checks in O(LP(n+m,h + n+m)) whether a linear combination of vertices yields a point that
fulfills the inequality constraints.

Boundedness V-polytopes are bounded by definition. For polyhedra in halfspace represen-
tation, we check whether a simplex3 can be scaled to enclose the polytope. Consequently, we
evaluate the support function along the n+ 1 normal vectors in Asimplex = [In −1]⊤ bounding
the simplex:

bounded (⟨A, b⟩H)←

{
⊤ if ∀i ∈ {1, . . . , n+ 1} ∃a ∈ R : ρ

(
⟨A, b⟩H , Asimplex(i,·)

)
≤ a

⊥ otherwise.
(16)

The complexity of (16) is O(n LP(n, h)).

Degeneracy For V-polytopes, degeneracy can be determined in O(nmmin{n,m}) via ana-
lyzing the rank of the matrix that contains all points shifted by their arithmetic mean v̄ ∈ Rn

so that they enclose the origin, which is required to check whether the polytope lies in a strict
subspace:

degenerate (⟨[v1 . . . vm ]⟩V )←

{
⊤ if rank([v1 − v̄ . . . vm − v̄]) < n

⊥ otherwise.
(17)

We determine degeneracy of H-polytopes in O(LP(n, h)) via the Chebyshev center, see (19):

degenerate (⟨A, b⟩H)←

{
⊤ if r > 0, with r as in (19)

⊥ otherwise.
(18)

If the radius of the Chebyshev ball is 0, then the polytope must be degenerate. Note that
not only the Chebyshev center, but any interior point suffices to disprove degeneracy if a ball
around that point with non-zero radius is contained in the polytope.

4.3 Set Operations

Next, we show how we have implemented the set operations in Table 3 for V-polytopes and
H-polytopes.

3A simplex has only n + 1 halfspaces, the smallest number for any bounded, non-degenerate H-polytope.
This follows from duality, as a non-degenerate V-polytope requires at least n+ 1 vertices.
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Table 3: Definitions of set operations using convex sets Si ⊆ Rn, the matrix M ∈ Rm×n, and
the vector ℓ ∈ Rn.

Set operation Definition

Chebyshev center See (19)

Basis of affine hull Matrix B with minimal rank s.t. S ⊆ span(B) + c for some c ∈ Rn

Linear map MS := {Ms | s ∈ S}
Minkowski sum S1 ⊕ S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2}
Minkowski difference S1 ⊖ S2 := {s | s⊕ S2 ⊆ S1}
Cartesian product S1 × S2 := {[s⊤1 s⊤2 ]

⊤ | s1 ∈ S1, s2 ∈ S2}
Convex hull conv (S1,S2) := {λs1 + (1− λ)s2 | s1 ∈ S1, s2 ∈ S2, λ ∈ [0, 1]}
Support function ρ (S, ℓ) := maxs∈S ℓ⊤s

Support vector ν (S, ℓ) := argmaxs∈S ℓ⊤s

Intersection S1 ∩ S2 := {s | s ∈ S1 ∧ s ∈ S2}
Union S1 ∪ S2 := {s | s ∈ S1 ∨ s ∈ S2}

Chebyshev center Given a V-polytope, we first convert it to an H-polytope. The Chebyshev
center is defined as the center of the largest ball contained inside the polytope, which can be
determined for H-polytopes through the following linear program in O(LP(n, h)) [2, Sec. 8.5.1]:

max
r∈R, c∈Rn

r s.t. ∀j ∈ {1, . . . , h} : A(j,·)c+ r∥A(j,·)∥2 ≤ b(j), r ≥ 0, (19)

where r ∈ R is the radius of the ball and c ∈ Rn its center, i.e., the Chebyshev center. If the
constraints are infeasible, the polytope is empty, and we cannot return a result; if r = 0, the
polytope is degenerate. Please note that the Chebyshev center c is not necessarily unique—an
example for this is a rectangle in R2.

Basis of affine hull For the computation of a minimal vertex representation of degenerate
sets using the Quickhull algorithm, we require to map the set into the space of its affine hull.
To obtain the basis B ∈ Rn×r of the affine hull, one first has to shift the polytope by a vector
c ∈ P, which yields the polytope Pshift = P − c that contains the origin. This allows one to
analyze in which subspace Pshift lies, i.e., one can find a basis B ∈ Rn×r of minimal rank such
that Pshift ⊆ span(B), which yields a basis of the affine hull P ⊆ span(B) + c.

For V-polytopes, we compute the QR decomposition of the matrix containing all points
shifted by the arithmetic mean v̄ ∈ Rn over all points, which has a complexity of O(nm2):

B = [Q(·,1) . . . Q(·,r)] with QR = V̄ , r = rank V̄ , V̄ = [v1 − v̄ . . . vm − v̄]. (20)

For an H-polytope, we propose a novel method to determine the basis of the affine hull,
where the main idea is to iteratively append orthogonal vectors, to form an orthonormal basis
that generates the affine hull of the polytope. Algorithm 2 summarizes the procedure: Assuming
P is not empty, we first compute the Chebyshev center c (line 1) and shift the polytope so that
the origin 0 is included in the shifted polytope Pshift (line 2). In each iteration, we search
for a new non-zero vector xiter that is perpendicular to all previously obtained vectors (line 4)
stored in the matrix B. That way, we can construct the linear hull span(B) that fully contains
the shifted polytope. Concretely, such an xiter can be computed as the maximizer for x of the
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Algorithm 2 Basis of the affine hull

Require: H-polytope P = ⟨A, b⟩H , tolerance ε ∈ R, 0 < ε≪ 1, value φ ∈ R, φ > 0
Ensure: Basis B ∈ Rn×r of the affine hull
1: B ← [ ], c← (19) ▷ Exit if (19) is infeasible
2: Pshift ← P − c ▷ Shift so that 0 ∈ P
3: for r ← 1 to n do
4: xiter ← (22)
5: if ∥xiter∥∞ ≤ ε then
6: break ▷ No more non-trivial perpendicular directions
7: end if
8: B ← [B xiter] ▷ Append to orthonormal basis
9: end for

10: return B

optimization problem

max
w∈Rk

x+Bw∈Pshift

∥x∥∞ s.t. ∀i ∈ {1, . . . , r} : B⊤
(·,i)x = 0, (21)

which is equivalent to

max
y∈{e1,−e1,...,en,−en}

max
w∈Rr

x+Bw∈Pshift

y⊤x s.t. ∀i ∈ {1, . . . , r} : B⊤
(·,i)x = 0. (22)

The problem in (22) can be solved using 2n linear programs, one for each basis vector ±ei.
Note that (22) may be unbounded if P is unbounded, in which case one can add the constraint
y⊤x ≤ φ for some arbitrary φ > 0. If the vector xiter is 0, we can conclude that Pshift ⊆ span(B).
To prove this, we argue by contradiction: Suppose Pshift ̸⊆ span(B), so that there exists a point
z ∈ Pshift with z ̸∈ span(B). Such a point can always be decomposed as z = zB + zB⊥ , with
zB ∈ span(B) and zB⊥ ∈ span(B)⊥. The vector zB⊥ corresponds to x in (21), and zB can, by
construction, always be written as zB = Bw for some w ∈ Rr, where r is the current number
of columns of B. Since in (21) we maximize with respect to the length of x, the case xiter = 0
can only happen if there does not exist any non-zero vector zB⊥ in the decomposition of z,
hence z must be entirely contained in span(B), which proves Pshift ⊆ span(B). The overall
time complexity of Algorithm 2 is O(nr LP(n + rmax, h + rmax)), where rmax is the number of
required basis vectors, due to 2n support function evaluations required for solving (22).

Linear map For V-polytopes, the linear map with a matrix M ∈ Rr×n follows directly from
Definition 2 and Table 3, which can be evaluated in O(nmr):

M ⟨[v1 . . . vm ]⟩V = ⟨[Mv1 . . .Mvm ]⟩V . (23)

For H-polytopes, we use the singular value decomposition

M = UΣV ⊤,

where Σ =

[
D 0
0 0

]
∈ Rm×n, D ∈ R(m−r)×n, r = rankM,

∀i = j : D(i,j) > 0, ∀i ̸= j : D(i,j) = 0,
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in the general case, and a simple matrix inverse if M is square and invertible:

M ⟨A, b⟩H =


〈
AM−1, b

〉
H

if M is square and invertible,

U [Ir 0]

〈
AV

[
D−1 0

0 In

]
, b

〉
H

otherwise.
(24)

The simple case is O(hn2) and follows directly from the definition. In contrast, the general case
contains a projection operation that we solve using the Fourier-Motzkin elimination [23]: This
algorithm takes a system of linear inequalities Ax ≤ b and projects it onto the hyperplane {x ∈
Rn |x(j) = 0}. Successive application yields a projection onto a lower-dimensional subspace. In
general, the time complexity of the projection is not polynomial [1, Ch. 1.3].

Minkowski sum The Minkowski sum of two V-polytopes follows directly from Definition 2
and Table 3: We add all pairs of points in O(nm1m2),〈[

v
(1)
1 . . . v(1)m1

]〉
V
⊕
〈[

v
(2)
1 . . . v(2)m2

]〉
V

=
〈
[v

(1)
1 + v

(2)
1 . . . v

(1)
1 + v(2)m2

. . . v(1)m1
+ v

(2)
1 . . . v(1)m1

+ v(2)m2
]
〉
V
,

(25)

which generally yields redundant points that can be removed as described in Section 4.1. For
H-polytopes, it follows directly from Definition 1 and Table 3 that

⟨A1, b1⟩H ⊕ ⟨A2, b2⟩H = [In In]

〈[
A1 0
0 A2

]
,

[
b1
b2

]〉
H

, (26)

which requires the projection from 2n to n dimensions. The Minkowski sum of two polytopes
in halfspace representation is known to be NP-hard [24].

For the Minkowski sum of a V-polytope and an H-polytope, one has to convert one summand
into the desired representation of the resulting set and use (25) or (26) accordingly. For CORA,
we chose to always transform both summands to H-polytopes.

Minkowski difference The Minkowski difference of two V-polytopes is computed by an
intermediate conversion of the minuend to the halfspace representation. For an H-polytope as
a minuend, we only require to evaluate the support function of the subtrahend to obtain [25,
Thm. 2.2]

⟨A1, b1⟩H ⊖ P2 = ⟨A1, b
∗⟩H

where ∀j ∈ {1, . . . , h1} : b∗(j) = b1(j) − ρ
(
P2, A

⊤
1(j,·)

)
,

(27)

which is O(h1nm2) if the subtrahend P2 is a V-polytope and O(h1 LP(n, h2)) if the subtrahend
is an H-polytope. Please note that (27) also extends to arbitrary subtrahends. For example, if
⟨A2, b2⟩H = ∅, the support function evaluates to −∞, see (33), and the resulting set becomes
Rn. Moreover, the result of (27) can be the empty set, which has to be checked using (9).

Cartesian product For V-polytopes, it follows directly from Definition 2 and Table 3 that〈[
v
(1)
1 . . . v(1)m1

]〉
V
×
〈[

v
(2)
1 . . . v(2)m2

]〉
V
=

〈[
v
(1)
1 . . . v

(1)
1 . . . v

(1)
m1 . . . v

(1)
m1

v
(2)
1 . . . v

(2)
m2 . . . v

(2)
1 . . . v

(2)
m2

]〉
V

(28)
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and for H-polytopes, Definition 1 and Table 3 directly lead to the formula

⟨A1, b1⟩H × ⟨A2, b2⟩H =

〈[
A1 0
0 A2

]
,

[
b1
b2

]〉
H

. (29)

Both operations are in O(1). For the Cartesian product of a V-polytope and an H-polytope
(in any order), one has to convert one of two operands into the desired representation of the
resulting set and then apply (28) or (29) accordingly. For CORA, we chose to always transform
both factors to H-polytopes.

Convex hull Since V-polytopes are defined via the convex hull of a set of points, the evalu-
ation of the convex hull operation is trivially obtained in O(1):

conv
(〈[

v
(1)
1 . . . v(1)m1

]〉
V
,
〈[

v
(2)
1 . . . v(2)m2

]〉
V

)
=

〈[
v
(1)
1 . . . v(1)m1

v
(2)
1 . . . v(2)m2

]〉
V
. (30)

To compute the exact convex hull of two H-polytopes, we convert them into V-polytopes,
compute the convex hull using (30), and convert the result back to H-polytopes. This procedure
requires substantial computational effort, so that we instead propose a simpler method to
compute an enclosure of the convex hull given a number h∗ ∈ N of template directions as row
vectors in A∗ ∈ Rh∗×n [4, Sec. 2]:

conv (⟨A1, b1⟩H , ⟨A2, b2⟩H) ⊆ ⟨A∗, b∗⟩H ,

∀j ∈ {1, . . . , h∗} : b∗(j) = max
{
ρ
(
⟨A1, b1⟩H , (A∗

(j,·))
⊤
)
, ρ

(
⟨A2, b2⟩H , (A∗

(j,·))
⊤
)}

,
(31)

which may be sufficiently tight in case one can exploit information about the two H-polytopes
to select good directions for A∗. The computational complexity is O(h∗(LP(n, h1)+LP(n, h2))).

For the convex hull of a V-polytope and an H-polytope, we convert one of the two operands
to the desired representation of the resulting set and then evaluate (30) or (31) accordingly.

Support function Using the definition from Table 3, the support function of a V-polytope is
obtained by simply returning the maximum value over the dot product of the direction ℓ ∈ Rn

and all points:
ρ (⟨[v1 . . . vm ]⟩V , ℓ) = max

i∈{1,...,m}
ℓ⊤vi, (32)

which is O(nm). In contrast, the support function of an H-polytope requires the linear program

ρ (⟨A, b⟩H , ℓ) = max
x∈Rn

ℓ⊤x s.t. Ax ≤ b, (33)

which can be solved in O(LP(n, h)) and follows directly from inserting Definition 1 into the
definition of the support function in Table 3. If the H-polytope is unbounded in the direction ℓ,
the result is ∞. For an empty polytope, the support function evaluates to −∞ by convention.

Support vector The support vector is given by the arguments that maximize (32) and (33),

ν (⟨[v1 . . . vm ]⟩V , ℓ) = vi∗ , with i∗ = argmax
i∈{1,...,m}

ℓ⊤vi (34)

ν (⟨A, b⟩H , ℓ) = argmax
x∈Rn

ℓ⊤x s.t. Ax ≤ b, (35)

for V-polytopes and H-polytopes, respectively, with the same computational complexity as for
computing the support function value. Note that the support vector is in general not unique.
For unbounded and empty sets, we return an error message, as the support vector is not well-
defined.
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Intersection Since the intersection of two V-polytopes is NP-hard to compute [24], we first
convert both V-polytopes to H-polytopes, then apply the intersection operation (36) below,
after which we convert the resulting H-polytope back to a V-polytope.

For H-polytopes, the intersection follows directly from Definition 1 in O(1):

⟨A1, b1⟩H ∩ ⟨A2, b2⟩H =

〈[
A1

A2

]
,

[
b1
b2

]〉
H

. (36)

Note that the intersection may yield an empty set ∅.
For the intersection of a V-polytope and an H-polytope, we convert the V-polytope to an

H-polytope. If the resulting set is requested in vertex representation, we apply the vertex
enumeration to the result of (36).

Union Since the union of two polytopes is in general not a polytope, we return an outer
approximation using the convex hull, see (30)-(31):

P1 ∪ P2 ⊆ conv (P1,P2) . (37)

5 Numerical Evaluation

In this section, we evaluate all operations from Sections 4.2 and 4.3 using our implementation in
CORA, with MOSEK [26] for solving linear programs. Additionally, we provide a comparison
to the multi-parametric toolbox in terms of the computation times for an increasing dimension.
All computations are carried out on an AMD Ryzen 5 5600H processor with a 3.30 GHz Radeon
Graphics unit and 16GB memory.

5.1 Generation of Random Polytopes

Algorithm 3 Random generation of H-polytopes

Require: Dimension n ∈ N, number of constraints h ∈ N, h ≥ n+ 1
Ensure: Bounded, non-degenerate polytope P ⊂ Rn

1: A← [In − 1√
n
1]⊤, b← 1 ▷ Initialize simplex

2: for j ← n+ 2 to h do
3: Sample direction ℓ ∈ Rn from unit ball
4: A← [A⊤ ℓ]⊤, b← [b⊤ 1]⊤ ▷ Append new constraint
5: end for
6: Sample invertible matrix M ∈ Rn×n, sample vector z ∈ Rn

7: P ←M ⟨A, b⟩H + z ▷ Affine map
8: return P

One can easily generate random polytopes by sampling points in Rn and computing the
convex hull. Since the convex hull as well as the facet enumeration for the conversion to H-
polytopes are computationally demanding operations for large dimensions n, we propose a more
direct method. The procedure summarized in Algorithm 3 randomly generates bounded, non-
degenerate H-polytopes, which requires at least n + 1 constraints. The three main steps are
illustrated in Figure 1 for the generation of a two-dimensional polytope with five constraints:

Step 1: (Figure 1a) We instantiate a simplex (line 1), which has n+ 1 constraints.
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x1

x2[
−1 −

√
2

1

] [
1
1

]

[
1

−1 −
√
2

]

(a) Step 1: 2D-Simplex (line 1).

x1

x2

(b) Step 2: Intersection with ad-
ditional constraints (line 4).

x1

x2

(c) Step 3: Affine map (line 7).

Figure 1: Illustration of Algorithm 3 for n = 2 and h = 5.

Step 2: (Figure 1b) For the remaining number of constraints (if h = n+1, we directly proceed
to Step 3), we sample a random direction ℓ ∈ Rn from the unit ball and append the
inequality constraint ℓx ≤ 1 to the constraint matrix A and offset b (line 4). Since
the simplex is chosen such that a unit ball fits tightly inside, any direction ℓ of unit
length and with an associated offset of 1 will be non-redundant.

Step 3: (Figure 1c) We compute the affine map of the polytope ⟨A, b⟩H (line 7), where we have
to ensure that the matrix M is invertible, as the resulting polytope would otherwise
become degenerate. This can easily be ensured by choosing, e.g., the matrix U from
the singular value decomposition N = UΣV ⊤ of a random matrix N ∈ Rn×n.

5.2 Comparison to the Multi-Parametric Toolbox

Finally, we compare our implementation in CORA to the popular multi-parametric toolbox
using the average computation time for each operation described in Sections 4.2 and 4.3. The
random polytopes of increasing dimension n required for the comparison are generated by
Algorithm 3 with the number of constraints chosen randomly between 2n+ ⌊n/2⌋ and 3n.

Table 4 shows the computation times averaged over 50 different polytopes per dimension.
Both tools are similarly fast at removing redundant points from the vertex representation as
well as the vertex enumeration. In contrast, our implementation is much faster in removing
redundant halfspaces and in converting from the vertex to the halfspace representation. CORA
outperforms the multi-parametric toolbox in the evaluation of all predicates introduced in
Section 4.2, and the difference becomes more apparent as the set dimension increases. Moreover,
our implementations for checking containment, boundedness, and set equality are orders of
magnitude faster. Please note that we omitted the intersection check, as it amounts to checking
emptiness. CORA is also faster for almost all set operations defined in Section 4.3. The time gap
for computing the Chebyshev center as well as the linear map with an invertible matrix widens
over an increasing dimension. For the linear map with a singular matrix and the Minkowski
sum, both of which cause computationally demanding projections onto a lower-dimensional
subspaces, and the evaluation of the Minkowski difference, CORA is seconds quicker than the
multi-parametric toolbox in large dimensions. The evaluation of the support function and the
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support vector is similarly fast for both tools. Finally, our novel algorithm for computing the
basis of the affine hull also scales well. Please note that the convex hull and union operations
are not included, as they mainly amount to enumerating the vertices; the Cartesian product
and intersection are left out since their complexity is O(1).

6 Conclusion

This work presents our implementation of a polytope class in the Continuous Reachability
Analyzer (CORA) for set-based computing. Moreover, this is the first paper that exhaustively
documents the most relevant polytope set operations. In particular, we explicitly handle degen-
erate and unbounded sets for all operations. Our numerical evaluation on randomly generated
polytopes of varying dimensions shows a significant speed up for computationally demanding
operations in comparison to the popular multi-parametric toolbox.

7 Acknowledgments

The authors gratefully acknowledge financial support by the project justITSELF funded by the
European Research Council (ERC) under grant agreement No 817629.

References

[1] G. M. Ziegler. Lectures on polytopes. Springer Science & Business Media, 2012.

[2] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.
doi: 0.1017/CBO9780511804441.

[3] A. Girard and C. Le Guernic. Efficient reachability analysis for linear systems using
support functions. IFAC Proceedings Volumes, 41(2), 2008. doi: 10.3182/20080706-5-
KR-1001.01514.

[4] C. Le Guernic and A. Girard. Reachability analysis of linear systems using support func-
tions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010. doi: 10.1016/j.nahs.
2009.03.002.
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