
EPiC Series in Computing

Volume 103, 2024, Pages 153–162

Proceedings of the 11th Int. Workshop on Applied
Verification for Continuous and Hybrid Systems

Randomized Generation of Arbitrarily Difficult Verification

Benchmarks for Linear Time-Invariant Systems

Mark Wetzlinger and Matthias Althoff

Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany
{m.wetzlinger,althoff}@tum.de

Abstract

Benchmark proposal: The verification of uncertain linear systems is a fundamental
building block for the analysis of complex cyber-physical systems. While there exist many
advanced tools for numerical analysis, their evaluation is to date limited by selected bench-
marks. To better understand the strengths and weaknesses of formal verification algorithms
for linear systems, we propose a randomized generation of verification benchmarks in this
paper. To this end, we leverage a reachability algorithm that can compute reachable sets
with arbitrary precision. By placing unsafe sets exactly at the boundary of the computed
outer and inner approximations, we are able to generate random verification tasks of ar-
bitrary difficulty by changing the precision of the reachability analysis. We validate our
approach by verifying and falsifying increasingly complex generated benchmarks using a
state-of-the-art verification algorithm.

1 Introduction

Formal verification of reach-avoid problems proves whether a dynamical system, subject to
uncertainties in the initial state, the input, and potentially parameters, can avoid unsafe sets
over a given time horizon. To this end, a wide variety of different approaches have been
developed, e.g., simulation-based techniques [1, 2, 3], set-propagation methods [4, 5], barrier
certificates [6], reformulations to optimization problems [7, 8], and theorem-proving approaches
[9]. The annual ARCH competition provides a level playing field for comparing these approaches
over various categories of different system classes. Tools such as SpaceEx [10], CORA [11],
JuliaReach [12], HyDRA [13], C2E2 [14], HyLAA [15], and XSpeed [16] have participated
in recent editions of the linear systems category [17], at which this benchmark proposal is
addressed.

G. Frehse and M. Althoff (eds.), ARCH-COMP24 (EPiC Series in Computing, vol. 103), pp. 153–162



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

Currently, analysis tools are evaluated on selected state-of-the-art benchmarks. While this
is beneficial regarding the comparability between approaches, it incentivizes tool developers to
tune their approaches toward specific benchmarks. However, this casts doubt on the general-
ization of the proposed approaches to larger audiences and industrial practitioners, as expert
knowledge is required to obtain optimal results. In fact, many current approaches depend on
the tuning of algorithm parameters, which heavily influence the result1—bad parameter tuning
can lead to spurious counterexamples, and, consequently, unsuccessful verification.

In some cases, manual tuning might not even be possible, as linear systems may be generated
automatically or on-the-fly, e.g., due to simplifications of more complex system dynamics. Also,
the system dynamics may change during operation due to unforeseen events, such as hardware
failures. In this case, an algorithm that can adapt to different dynamics is preferable over
manually-tuned counterparts. In summary, an enhanced generalization of current approaches
and increased adaptability constitute our core motivation for the benchmark proposal presented
in this paper.

In Section 2, we introduce the notation and fundamentals about linear systems and reach-
ability analysis to formulate the verification task. Next, we show how to randomly generate
verification benchmarks in Section 3, where we first generate a random linear system, then
compute the reachable set, and finally place the unsafe sets, resulting in verification bench-
marks that are verifiable or falsifiable by construction. In Section 4, we showcase the entire
procedure on two selected randomly generated benchmarks and validate the correct generation
over increasingly complex benchmarks using a state-of-the-art verification algorithm. We draw
conclusions in Section 5.

2 Preliminaries

2.1 Notation

The nonnegative natural, positive natural, real, positive real, and complex numbers are denoted
by N, N+, R, R+, and C, respectively. The real and imaginary part of a complex number
z = a + bi ∈ C are returned by the operators ℜ(z) = a and ℑ(z) = b. The floor operator ⌊x⌋
returns the next lower integer number of x ∈ R. Given a vector v ∈ Rn, v(i) denotes the ith
entry. For a matrix M ∈ Rn1×n2 , M(i,·) returns the ith row and M(·,j) returns the jth column.
The eigenvalues of a square matrix M ∈ Rn×n are denoted by λ1(M), . . . , λn(M) ∈ C. For two
matrices M1,M2, diag(M1,M2) returns a blockdiagonal matrix with the matrices concatenated
diagonally.

Sets are denoted by calligraphic letters S ⊆ Rn. For a matrix M ∈ Rn×n and a set S ⊂ Rn,
the linear map is defined by MS := {Ms|s ∈ S}. The operation cen (S) returns the center
of a set S. The support function in a direction ℓ ∈ Rn is defined by ρ

(
S, ℓ

)
= maxx∈S ℓ⊤x

and the corresponding support vector is defined by ν (S, ℓ) = argmaxx∈S ℓ⊤x. For two sets
S1,S2 ⊂ Rn, their Minkowski sum is defined by S1 ⊕ S2 := {s1 + s2|s1 ∈ S1, s2 ∈ S2}, their
Minkowski difference is defined by S1 ⊖ S2 := {s|s ⊕ S2 ∈ S1}, and the Hausdorff distance
between them by

dH(S1,S2) = max
{
max
s1∈S1

(
min
s2∈S2

∥s1 − s2∥2
)
, max
s2∈S2

(
min
s1∈S1

∥s1 − s2∥2
)}

. (1)

1The ARCH reports for the various systems classes provide many examples for the intricate tuning efforts
required to solve certain benchmarks.

154



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

Using a hyperball Bε of radius ε, an alternative definition is

dH(S1,S2) = ε ⇔ S2 ⊆ S1 ⊕ Bε ∧ S1 ⊆ S2 ⊕ Bε. (2)

An interval I ⊂ Rn is written as [a, b] = {x ∈ Rn|a ≤ x ≤ b}, where the inequality holds
elementwise.

Let PI be a probability distribution defined on the domain I ⊆ R, where taking a random
value x is written as x ∼ PI . The uniform distribution of all integer numbers within the interval
I is represented by UI .

2.2 Linear Systems, Reachable Sets, and Verification Tasks

We consider linear time-invariant systems of the form

ẋ(t) = Ax(t) +Bu(t) (3a)

y(t) = Cx(t) + v(t), (3b)

where x ∈ Rn is the state vector, A ∈ Rn×n is the state matrix, u ∈ Rm is the input vector,
B ∈ Rn×m is the input matrix, y ∈ Rr is the output vector, C ∈ Rr×n is the output matrix,
and v ∈ Rr is the sensor noise. To analyze a linear system under the influence of uncertainties,
we compute the reachable set and the output set as defined subsequently.

Definition 1 (Reachable set and output set). For a given initial state x(0) and an input
trajectory u(·), let us denote the solution of (3a) at time t by ξ(t;x(0), u(·)). The reachable
set at time t ≥ 0 for all initial states within the initial set X0 ⊂ Rn and all input trajectories
bounded by the input set U ⊂ Rm is

R(t) := {ξ(t;x(0), u(·)) |x(0) ∈ X0,∀θ ∈ [0, t] : u(θ) ∈ U}. (4)

We write R(tk) for the time-point reachable set at time tk and R(τk) for the time-interval
reachable set for t ∈ τk = [tk, tk+1]. The output set follows from inserting (4) in (3b), i.e.,

Y(t) := {Cξ(t;x(0), u(·)) + v(t) |x(0) ∈ X0,∀θ ∈ [0, t] : u(θ) ∈ U , v(θ) ∈ V} = CR(t)⊕ V, (5)

where the sensor noise v is bounded by V ⊂ Rr. Analogously to the reachable set, we write
Y(tk) and Y(τk) for the time-point output set and time-interval output set, respectively.

Please note that the reachable set and output set over longer time horizons [0, tend] are

given by the unions R([0, tend]) =
⋃ω−1

k=0 R(τk), Y([0, tend]) =
⋃ω−1

k=0 Y(τk), where ω ∈ N+ is the
number of time steps.

For further use, let us refer to the tuple Θ = (tend,X0,U ,V) as the model parameters. It
is well known that the reachable set and, consequently, the output set can only be computed
exactly for special system classes [18]. In the context of safety verification, we thus compute

outer approximations Ŷ(t) ⊇ Y(t) to verify safety and inner approximations Ŷ(t) ⊆ Y(t) to
falsify safety. Recently, an automated reachability algorithm has been developed that, given
the model parameters Θ, returns arbitrarily tight outer approximations [19], i.e.,

∀t ∈ [0, tend] : dH
(
Y(t), Ŷ(t)

)
≤ ε, (6)

where ε ∈ R, ε > 0 is a user-defined value for the admissible error. Using (2), we obtain

Ŷ(t) = Ŷ(t)⊖ Bε ⊆ Y(t), (7)

which we will use for the generation of falsifiable benchmarks. Finally, let us formally introduce
the type of verification task considered in this work.

155



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

Algorithm 1 Random generation of linear systems

Require: State dimension n, input dimension m, output dimension r, interval Ireal bounding
ℜ(λ(A)), interval Iimag bounding ℑ(λ(A)), random distribution P

Ensure: State matrix A, input matrix B, output matrix C
1: λcc ∼ U[0,⌊n/2⌋], λreal ← n− λcc

2: ∀i ∈ {1, . . . , λreal} : Areal(i,i) ∼ PIreal

3: ∀i ∈ {1, 3, . . . , 2λcc − 1} : λ̃ ∼ PIreal
, Acc(i,i) ← λ̃, Acc(i+1,i+1) ← λ̃

4: ∀i ∈ {1, 3, . . . , 2λcc − 1} : λ̃ ∼ PIimag
, Acc(i+1,i) ← λ̃, Acc(i,i+1) ← −λ̃

5: ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} : Q(i,j) ∼ P[−∞,∞], A← Q diag(Areal, Acc)Q
−1

6: ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . ,m} : B(i,j) ∼ P[−∞,∞]

7: ∀i ∈ {1, . . . , r} ∀j ∈ {1, . . . , n} : C(i,j) ∼ P[−∞,∞]

8: return A, B, C

Problem 1 (Verification task). Given a linear system of the form (3), the model parameters
Θ = (tend,X0,U ,V) of proper dimensions, and a set of unsafe sets L1, . . . ,Lw ⊂ Rr, decide
whether

∀t ∈ [0, tend] : Y(t) ∩
w⋃

j=1

Lj = ∅, (8)

that is, whether the output set Y(t) intersects any unsafe set L1, . . . ,Lw at any point in time.

3 Randomized Generation of Verification Benchmarks

In this section, we show how to generate random verification benchmarks for linear systems
using a three-step process: First, we generate a random linear system; second, we compute an
outer approximation of the reachable set; and third, we place unsafe sets that are known to be
verifiable or falsifiable.

3.1 Randomized Generation of Linear Systems

The randomized generation of a linear system, determined by its state matrix A, input matrix B,
and output matrix C, is summarized in Algorithm 1. The required input arguments are the
state dimension n ∈ N+, the number of inputs m ∈ N, the number of outputs r ∈ N+, as
well as the bounds Ireal ⊂ R, Iimag ⊂ R for the real and imaginary parts of the eigenvalues
of A, respectively, and a distribution P for sampling from the respective domains. Please note
that the interval Iimag needs to be symmetric around zero. After determining the number of
purely real eigenvalues and complex-conjugate eigenvalues, we place all real eigenvalues on the
diagonal of the matrix Areal and the complex-conjugate eigenvalues a± bi ∈ C into the matrix
Acc as blocks of the form [

a −b
b a

]
.

Consequently, we construct the blockdiagonal matrix diag(Areal, Acc) ∈ Rn×n and rotate it
by a random matrix, see line 5. Finally, in lines 6 and 7, we sample the entries of the input
matrix B and the output matrix C. Please note that one can also choose different distributions
for each sampling procedure in lines 2-7.

156



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

3.2 Computation of Reachable Sets

After randomly generating a linear system using Algorithm 1, we require to set the model
parameters Θ. For the initial set X0 ⊂ Rn, the input set U ⊂ Rm, and the set V ⊂ Rr, we may
use a variety of different set representations, e.g., intervals, zonotopes, ellipsoids, or polytopes.
For the center c ∈ Rn, we sample from a given distribution P[−∞,∞] in each coordinate, i.e.,

∀i ∈ {1, . . . , n} : c(i) ∼ P[−∞,∞].

Let us briefly showcase the random generation for intervals I ⊂ Rn and zonotopes Z ⊂ Rn.
For intervals, we randomly sample the width of each dimension:

I = c⊕ [−a, a], ∀i ∈ {1, . . . , n} : a(i) ∼ P[−1,1]. (9)

For zonotopes, we sample each individual entry of the generator matrix G ∈ Rn×γ and scale
the resulting generators to another randomly sampled length:

Z =

{
c+

γ∑
j=1

G(·,j)β(j)

∣∣∣∣ ∥β∥∞ ≤ 1

}
, ∀j ∈ {1, . . . , γ} : G(·,j) ∼ PSn

, (10)

where PSn
is a distribution over the n-dimensional unit sphere Sn := {x ∈ Rn | ∥x∥2 = 1}.

Similar ideas can be used to generate random ellipsoids and polytopes.

We determine the time horizon tend using the largest real part λmax(A) ∈ R of all eigenvalues
of the state matrix A and the convergence criterion

eλmax(A)tend = η ⇒ tend =
ln η

λmax(A)
, (11)

where η ∈ R, 0 < η ≪ 1. Note that this requires that λmax(A) < 0, which is a sensible
requirement in practice to ensure stability.

Given the randomly generated set of model parameters Θ = (tend,X0,U ,V), we use the
algorithm from [19, Alg. 2] with tightness ε ∈ R+ to compute an outer approximation of the

reachable set Ŷ([0, tend]) ⊇ Y([0, tend]).

3.3 Placement of Unsafe Sets

For the purpose of benchmark generation, unsafe sets can be categorized into two groups de-
pending on their satisfiability. To obtain a satisfiable safety specification, one must place the
unsafe set such that it does not intersect the computed outer approximation. In contrast, an
unsafe set that intersects an inner approximation of the reachable set constitutes an unsatis-
fiable safety specification. Our main idea consists in generating sets, e.g., using (9)-(10) and
re-positioning the center afterward.

The procedure is illustrated in Figure 1: Given a random direction ℓ ∈ Rr, ∥ℓ∥2 = 1, we
compute the support vector η̂(ℓ) associated to the support function of the computed outer

approximation Ŷ([0, tend]), i.e.,

ŷ(ℓ) = ρ
(
Ŷ([0, tend]), ℓ

)
= max

k∈{0,...,ω−1}
ρ
(
Ŷ(τk), ℓ

)
.

157



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

y1

y2

ℓ

Y(t0)Ŷ([0, tend])

L0 + (η̂(ℓ)− s)
c

{
y
∣∣ ℓ⊤y = ŷ(ℓ)}

y1

y2

−ℓ
s

L0

η̂(ℓ)

Figure 1: The support vectors of the zero-centered unsafe set L0 and the output set Ŷ([0, tend])
are used for placing unsafe sets.

Next, we compute the support vector s = ν (L0,−ℓ) of the randomly generated set L0 centered
at the origin in the opposite direction −ℓ. Shifting the center of L0 to (η̂(ℓ)− s) then yields a
satisfiable specification, as the hyperplane {y | ℓ⊤y = ŷ(ℓ)} separates the outer approximation

Ŷ([0, tend]) from the translated unsafe set:

Y([0, tend]) ∩ L = ∅

with L := L0 + (η̂(ℓ)− s).

To obtain an unsatisfiable specification, we re-use the computed outer approximation
Ŷ([0, tend]) and the unsafe set L from above. Enlarging the unsafe set L by a ball Bε with
ε as in (6) yields an unsatisfiable specification:

Ŷ([0, tend]) ∩ L ̸= ∅
(6)⇒ Y([0, tend]) ∩

(
L ⊕ Bε

)
̸= ∅.

Hence, we repeat the procedure from above and then enlarge the obtained unsafe set L by the
error ball Bε to obtain an unsatisfiable specification.

The verification benchmarks can be made arbitrarily difficult via the tuning of the maximum
Hausdorff distance ε in (6) between the exact output set and the computed outer and inner
approximations. Obviously, the closer a specification is placed to the exact output set, the more
difficult it is to obtain a correct answer to Problem 1. Since the reachability algorithm in [19,
Alg. 2] is guaranteed to return a solution that respects the given Hausdorff distance ε, one can
simply increase the difficulty by tuning this value closer to 0.

4 Numerical Evaluation

In this section, we evaluate the proposed random generation of verification benchmarks: First,
we show two low-dimensional cases with satisfiable and unsatisfiable specifications, respectively.
Then, we let a state-of-the-art verification algorithm solve a large number of randomly generated
verification benchmarks with increasing complexity in order to validate our proposed procedure.

158



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

L1

L2L3

Y(t0)

Ŷ([0, tend])

−30 −25 −20 −15 −10 −5 0 5

−4

−2

0

2

4

y1

y 2

Figure 2: Verifiable verification benchmark: Initial output set Y(t0) = CX0, unsafe sets

L1,L2,L3, and outer approximation of the output set Ŷ([0, tend]).

−2 0 2 4 6 8 10 12 14 16
−5

0

5

10

y1

y 2

Y(t0)

L1
L2

L3

y(1,2)(t)

y(3)(t)

Figure 3: Falsifiable verification benchmark: Initial output set Y(t0) = CX0, unsafe halfspaces
L1,L2,L3, and falsifying trajectories y(1)(t), y(2)(t), y(3)(t).

4.1 Illustrative Examples

For both illustrative examples, we set the state dimension to n = 5, the input dimension to
m = 1, and the output dimension to r = 2. For the real and imaginary parts of the eigenvalues,
we use the intervals Ireal = [−5,−1] and Iimag = [−0.5, 0.5]. We use a zonotope to represent
the initial set X0 and an interval to represent the input set U . The set V is only the origin
since it does not affect the difficulty of the generated verification benchmark. In both cases, we
bound the Hausdorff distance in (6) by ε = 0.01. The generated benchmarks can be obtained
in the CORA version v2024.3.02 using the file example linear verify randomGeneration.m.

Figure 2 shows a verifiable benchmark. The verification algorithm [19] computes an outer

approximation of the output set Ŷ([0, tend]) in ω = 233 time steps, with time step sizes ranging

between ∆t = 0.0019 and ∆t = 0.1243. The computed output set Ŷ([0, tend]) successfully avoids
all three unsafe sets, thereby verifying safety for this instance of Problem 1.

2Available at https://github.com/TUMcps/CORA.

159

https://github.com/TUMcps/CORA


Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

In contrast, Figure 3 shows a benchmark that cannot be verified. The verification algorithm
in [20] proves that there are initial states x(0) ∈ X0 with input trajectories u(t), for which the
resulting output trajectory y(t) reaches each unsafe set. Since we have at least one violation,
safety is falsified for the given instance of Problem 1.

4.2 Scalability

Finally, we validate our randomized generation of verification benchmarks for increasingly com-
plex scenarios. To this end, we vary the state dimension from 5 to 100 and the number of inputs
and outputs from 1 to 10. Furthermore, we restrict ourselves to 1 to 10 unsafe sets represented
as halfspaces, as they constitute one of the most common types of safety specifications. We
alternate between benchmarks with satisfiable and unsatisfiable specifications. The difficulty
of the generated benchmarks is determined by the Hausdorff distance ε in (6), which we set
relative to the size of the initial set X0 using the factor µ > 0 in Table 1:

ε = µ

∥∥∥∥ n∑
i=1

d(i)

∥∥∥∥
2

(12)

where d = b− a ∈ Rn is the diameter of the interval hull [a, b] ⊇ S.
Overall, the generation time increases with the dimension of the linear system, as it is

increasingly time-consuming to compute outer approximations with a small Hausdorff distance
ε to the exact output set. This is also why we increased the factor µ for state dimensions 50
and 100. Still, our approach can generate large-scale verification benchmarks within less than
a second on average. In general, the computation time grows as the value ε in (6) decreases.

To show that our proposed generation indeed returns verification benchmarks that are ver-
ifiable or falsifiable as requested, we feed them to the verification algorithm from [20]. In all
cases, the correct result is returned. The falsifiable benchmarks are solved a bit faster than the
verifiable benchmarks, as their analysis can be aborted as soon as an unsafe set is entered.

5 Conclusion

We propose an approach to generate random verification benchmarks for linear time-invariant
systems that are verifiable or falsifiable by construction. After generating a random linear
system from user inputs, such as the state dimension or ranges for the eigenvalues of the state
matrix, we compute the reachable set of known tightness with respect to the exact reachable
set. This allows us to place unsafe sets that are known to be avoidable or unavoidable. The
proposed generation of verification benchmarks can be used by current state-of-the-art tools
for formal verification to identify their strengths and weaknesses, as well as to test automated
approaches for reachability and verification alike.

6 Acknowledgments

The authors gratefully acknowledge financial support by the project justITSELF funded by the
European Research Council (ERC) under grant agreement No 817629.

160



Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

Table 1: Increasingly complex randomly generated verification benchmarks solved using the
approach in [20]. Computation times on average over 5 randomly generated benchmarks.

Dynamics Benchmark generation Approach in [20]

n m r w µ Satisfiable? Generation time Verification time

5 1 1 1 0.1 Yes 0.0856 s 0.0116 s
5 1 1 1 0.1 No 0.1899 s 0.0092 s
5 1 1 1 0.01 Yes 0.4387 s 0.0279 s
5 1 1 1 0.01 No 0.3748 s 0.0085 s

10 2 2 3 0.1 Yes 0.0809 s 0.0133 s
10 2 2 3 0.1 No 0.5151 s 0.0108 s
10 2 2 3 0.01 Yes 0.3461 s 0.0210 s
10 2 2 3 0.01 No 0.4105 s 0.0106 s

50 5 5 5 0.25 Yes 0.1205 s 0.0182 s
50 5 5 5 0.25 No 0.3968 s 0.0114 s
50 5 5 5 0.05 Yes 0.8761 s 0.0778 s
50 5 5 5 0.05 No 0.2467 s 0.0104 s

100 10 10 10 0.25 Yes 0.7931 s 0.0707 s
100 10 10 10 0.25 No 0.3862 s 0.0139 s
100 10 10 10 0.05 Yes 0.4708 s 0.0523 s
100 10 10 10 0.05 No 0.9049 s 0.0134 s

References

[1] A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In Proc. of the
10th International Workshop on Hybrid Systems: Computation and Control, pages 174–
189. Springer, 2007. doi: 10.1007/978-3-540-71493-4_16.

[2] T. Dang, A. Donzé, O. Maler, and N. Shalev. Sensitive state-space exploration. In Proc.
of the 47th Conference on Decision and Control, pages 4049–4054. IEEE, 2008. doi:
10.1109/CDC.2008.4739371.

[3] P. S. Duggirala and M. Viswanathan. Parsimonious, simulation based verification of linear
systems. In Proc. of the 28th International Conference on Computer Aided Verification,
pages 477–494. Springer, 2016. doi: 10.1007/978-3-319-41528-4_26.

[4] E. Goubault and S. Putot. Inner and outer reachability for the verification of control
systems. In Proc. of the 22nd International Conference on Hybrid Systems: Computation
and Control, pages 11–22. ACM, 2019. doi: 10.1145/3302504.3311794.

[5] M. Althoff, G. Frehse, and A. Girard. Set propagation techniques for reachability analysis.
Annual Review of Control, Robotics, and Autonomous Systems, 4(1):369–395, 2021. doi:
10.1146/annurev-control-071420-081941.

[6] S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates.
In Proc. of the 7th International Workshop on Hybrid Systems: Computation and Control,
pages 477–492. Springer, 2004. doi: 10.1007/978-3-540-24743-2_32.

161

https://doi.org/10.1007/978-3-540-71493-4_16
https://doi.org/10.1109/CDC.2008.4739371
https://doi.org/10.1007/978-3-319-41528-4_26
https://doi.org/10.1145/3302504.3311794
https://doi.org/10.1146/annurev-control-071420-081941
https://doi.org/10.1007/978-3-540-24743-2_32


Randomized Generation of Verification Benchmarks for LTI Systems Wetzlinger and Althoff

[7] H. Yin, A. Packard, M. Arcak, and P. Seiler. Reachability analysis using dissipation
inequalities for uncertain nonlinear systems. Systems and Control Letters, 142:104736,
2020. doi: 10.1016/j.sysconle.2020.104736.

[8] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin. Hamilton-Jacobi reachability: A brief
overview and recent advances. In Proc. of the 56th Conference on Decision and Control,
pages 2242–2253. IEEE, 2017. doi: 10.1109/CDC.2017.8263977.

[9] A. Platzer. Logical analysis of hybrid systems: Proving theorems for complex dynamics.
Springer, 2010. doi: 10.1007/978-3-642-14509-4.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Proc. of the
23rd International Conference on Computer Aided Verification, LNCS 6806, pages 379–
395. Springer, 2011. doi: 10.1007/978-3-642-22110-1_30.

[11] M. Althoff. An introduction to CORA 2015. In Proc. of the Workshop on Applied Verifi-
cation for Continuous and Hybrid Systems, pages 120–151, 2015. doi: 10.29007/zbkv.

[12] S. Bogomolov, M. Forets, G. Frehse, K. Potomkin, and C. Schilling. JuliaReach: A tool-
box for set-based reachability. In Proc. of the 22nd International Conference on Hybrid
Systems: Computation and Control, pages 39–44. ACM, 2019. doi: 10.1145/3302504.
3311804.

[13] S. Schupp and E. Ábrahám. The HyDRA tool–a playground for the development of hy-
brid systems reachability analysis methods. In Proc. of the PhD Symposium at iFM18,
pages 22–23, 2018.

[14] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. C2E2: A verification tool for
stateflow models. In Proc. of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 68–82. Springer, 2015. doi: 10.1007/
978-3-662-46681-0_5.

[15] S. Bak and P. S. Duggirala. HyLAA: A tool for computing simulation-equivalent reacha-
bility for linear systems. In Proc. of the 20th International Conference on Hybrid Systems:
Computation and Control, pages 173–178. ACM, 2017. doi: 10.1145/3049797.3049808.

[16] R. Ray, A. Gurung, B. Das, E. Bartocci, S. Bogomolov, and R. Grosu. XSpeed: Accel-
erating reachability analysis on multi-core processors. In Haifa Verification Conference,
pages 3–18. Springer, 2015. doi: 10.1007/978-3-319-26287-1_1.

[17] M. Althoff, M. Forets, Y. Li, C. Schilling, M. Wetzlinger, and D. Zhuang. ARCH-COMP23
category report: Continuous and hybrid systems with linear continuous dynamics. In Proc.
of the 10th International Workshop on Applied Verification of Continuous and Hybrid
Systems, pages 34–60. EasyChair, 2023. doi: 10.29007/nl86.

[18] T. Gan, M. Chen, Y. Li, B. Xia, and N. Zhan. Reachability analysis for solvable dynamical
systems. IEEE Transactions on Automatic Control, 63(7):2003–2018, 2018. doi: 10.1109/
TAC.2017.2763785.

[19] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff. Fully automated verification of
linear systems using inner and outer approximations of reachable sets. IEEE Transactions
on Automatic Control, 68(12):7771–7786, 2023. doi: 10.1109/TAC.2023.3292008.

[20] M. Wetzlinger, N. Kochdumper, S. Bak, and M. Althoff. Fully-automated verification
of linear systems using reachability analysis with support functions. In Proc. of the 26th
International Conference on Hybrid Systems: Computation and Control. ACM, 2023. doi:
10.1145/3575870.3587121.

162

https://doi.org/10.1016/j.sysconle.2020.104736
https://doi.org/10.1109/CDC.2017.8263977
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.29007/zbkv
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1145/3302504.3311804
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1145/3049797.3049808
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.29007/nl86
https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1109/TAC.2017.2763785
https://doi.org/10.1109/TAC.2023.3292008
https://doi.org/10.1145/3575870.3587121

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Linear Systems, Reachable Sets, and Verification Tasks

	3 Randomized Generation of Verification Benchmarks
	3.1 Randomized Generation of Linear Systems
	3.2 Computation of Reachable Sets
	3.3 Placement of Unsafe Sets

	4 Numerical Evaluation
	4.1 Illustrative Examples
	4.2 Scalability

	5 Conclusion
	6 Acknowledgments

