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Abstract

Rewriting techniques based on reduction orderings generate “just enough” consequences
to retain first-order completeness. This is ideal for superposition-based first-order theorem
proving, but for at least one approach to inductive reasoning we show that we are miss-
ing crucial consequences. We therefore extend the superposition calculus with rewriting-
based techniques to generate sufficient consequences for automating induction in satura-
tion. When applying our work within the unit-equational fragment, our experiments with
the theorem prover Vampire show significant improvements for inductive reasoning.

1 Introduction

Automating proof by induction is a particularly hard task with a long history [1, 6, 8, 26, 37].
A promising line of research in this direction comes with the integration of induction into
saturation-based first-order theorem proving [12,16,20,33,38], by extending the logical calculus
with induction inference rules. Such induction rules are of the form

¬L[t] ∨ C

cnf(¬F ∨ C)

where ¬L[t] ∨ C is a clause, ¬L[t] a ground literal, t a term of some inductive data type, and
F → ∀x.L[x] is an instance of some valid second-order induction schema, for example structural
induction1. Note that the schema instance F → ∀x.L[x] is applied to resolve ¬L[t], but the
schema instance is never added to the saturation search space, making sure that the conclusion
of the inference is derived via inductive reasoning. As such, the application of the induction
rule is triggered by the presence of the literal ¬L[t] in the search space. Hence, if there is no
such literal, no induction is applied. Applying induction only when triggered means that only
premises of schema instances directly related to a clause selected during proof search are added
to the search space. This is a strong heuristic method for automating induction, particularly
in the presence of full first-order logic and theories [21,23,24].

Challenge. Unfortunately, applying induction only when triggered leads to tension between
two competing factors:

1cnf(¬F ∨ C) denotes the clausified formula ¬F ∨ C
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(i) It may be that a valid goal is not provable without deriving a certain consequence C, which
in turn triggers an induction rule with premise C with a specific schema.

(ii) Efficient first-order calculi, such as superposition [3], go to great lengths to derive and
retain only those consequences absolutely required for refutational completeness. Therefore,
induction rules that could be triggered by a (missing) consequence C might not be applied.

We show in our motivating example that this tension causes a lost proof in practice (Sec-
tion 2), as superposition may avoid generating consequences that would be needed to be used
in inductive proofs.

Our contributions. For automating (triggered) induction in saturation, we thus need to do
something counter-intuitive for those accustomed to first-order superposition reasoning. We
propose deriving slightly more consequences than usual, in order to trigger induction rules with
suitable schemas. Naturally, this must still be as few extra consequences as possible in order
to retain a high level of first-order efficiency. Concretely, motivated by applications of program
verification [17] in this paper we focus on the unit-equational fragment of first-order logic with
induction and bring the following contributions.

(1) We introduce a modified superposition calculus (Section 4) with slightly relaxed constraints,
allowing us to derive consequences that cannot be derived by standard superposition.

(2) We impose new restrictions on our calculus (Section 4) to further improve efficiency while
retaining our newfound ability to generate consequences.

(3) We improve redundancy elimination for saturation with induction, providing sufficient con-
ditions for skipping redundant induction steps and rewrites (Section 5).

(4) We implement our approach in the Vampire first-order prover [28] and apply it to proving
inductive properties (Section 6). Results show that our work improves the state of the art
in automating proofs by induction.

2 Motivating Example

We motivate our work from the domain of open programs [29, 32] using Figure 1. The data
types nat and list—corresponding to the term algebras of natural numbers and lists in first-order
logic—are defined inductively using constructors as given by the first-order formulas (nat.1)–
(list.3). Moreover, Figure 1 defines the recursive functions for the addition of natural numbers
(+), list append (@) and list length (J.K), encoded by (plus.1)–(length.2), and declares the
uninterpreted functions f and g corresponding to two open programs whose behaviour is given
by axioms (ax.1)–(ax.3). We use infix notation for the symbols +, @ and J.K. All properties in
Figure 1 are implicitly universally-quantified.

Suppose we are trying to prove that the axioms (denoted Ax) in Figure 1 imply the following
first-order formula:

∀x, y.Jg(y) @ f(x)K ≃ s(JxK + JyK) (Conj)

Proving (Conj) in classical first-order logic can be reduced to establishing the unsatisfiability of
the negation of (Conj) together with the axioms of Figure 1. That is, we prove unsatisfiability
of (nConj) together with the axioms (nat.1)–(ax.3); here, (nConj) is the negated and Skolemized
form, of (Conj), using the Skolem (list) functions c, d. While the axioms imply formula (Conj)
in the theory of lists and natural numbers, Ax∧ (nConj) is not first-order unsatisfiable. Showing
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Signature

0 : nat

s : nat → nat

nil : list

cons : nat → list → list

(+) : nat → nat → nat

(@) : list → list → list

(J.K) : list → nat

f : list → list

g : list → list

Axioms — Ax

0 ̸≃ s(x) (nat.1)

s(x) ̸≃ s(y) ∨ x ≃ y (nat.2)

nil ̸≃ cons(x, y) (list.1)

cons(x, y) ̸≃ cons(z, u) ∨ x ≃ z (list.2)

cons(x, y) ̸≃ cons(z, u) ∨ y ≃ u (list.3)

0+ x ≃ x (plus.1)

s(x) + y ≃ s(x+ y) (plus.2)

nil @ x ≃ x (append.1)

cons(x, y) @ z ≃ cons(x, y @ z) (append.2)

JnilK ≃ 0 (length.1)

Jcons(x, y)K ≃ s(JyK) (length.2)

g(x) @ f(y) ≃ f(x) @ g(y) (ax.1)

JxK + Jf(y)K ≃ Jf(x)K + JyK (ax.2)

Jf(g(x))K ≃ s(JxK) (ax.3)

Negated conjecture — ¬Conj

Jg(d) @ f(c)K ̸≃ s(JcK + JdK) (nConj)

Auxiliary lemma — Lem

∀x, y.Jx @ yK ≃ JyK + JxK (lemma)

Figure 1: Motivating example, conjecturing that the first-order formula Conj is implied by
first-order axioms Ax.

unsatisfiability requires an additional first-order axiom over lists, in particular the auxiliary
lemma Lem of Figure 1. With this lemma, Ax ∧ (nConj) ∧ Lem is unsatisfiable and validity of
Conj follows.

Let us make two key observations. First, from (nConj), the negation of an instance of Lem
(denoted by NLem) can be derived via rewriting with equal terms. Second, Lem is not a first-
order consequence of Ax, but it is valid with respect to Ax in the background theory of lists and
natural numbers, a fact that can be shown by induction. We make use of these two observations
to synthesize and use Lem in the proof of Conj as follows:

(i) We derive NLem from Ax ∧ (nConj) by rewriting. Soundness of rewriting ensures that the
unsatisfiability of Ax ∧ NLem implies the unsatisfiability of Ax ∧ (nConj).

(ii) We refute Ax ∧NLem by instantiating a valid induction schema with Lem to obtain a valid
first-order induction axiom, which in conjunction with Ax∧NLem is unsatisfiable, implying
the unsatisfiability of Ax ∧ (nConj) and hence the claim of Figure 1.

To derive NLem from Ax ∧ (nConj), we apply the following rewriting steps:

– rewrite (nConj) with (plus.2) resulting in Jg(d) @ f(c)K ̸≃ s(JcK) + JdK (1)

– rewrite (1) with (ax.3) resulting in Jg(d) @ f(c)K ̸≃ Jf(g(c))K + JdK (2)

– rewrite (2) with (ax.2) resulting in Jg(d) @ f(c)K ̸≃ Jg(c)K + Jf(d)K (3)

– rewrite (3) with (ax.1) resulting in Jf(d) @ g(c)K ̸≃ Jg(c)K + Jf(d)K (4)

Notice that clause (4) is the negation of Lem, instantiated with f(d) and g(c). To refute
Ax ∧ NLem, we conjecture Lem to be proven by induction, by taking the negation of (4) and
by generalizing over the term f(d). Hence, we instantiate the following second-order structural
induction formula over lists of natural numbers with Lem:

∀F.
((
F (nil) ∧ ∀x ∈ nat, y ∈ list.(F (y)→ F (cons(x, y)))

)
→ ∀z ∈ list.F (z)

)
(5)
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Showing the first-order unsatisfiability of this induction axiom in conjunction with Ax ∧ NLem
requires no further rewriting 2.

Note that the above reasoning actually proves Lem in addition to Conj, but it comes with the
following two main challenges for proving Figure 1:

(C1) use rewriting with equalities to derive NLem from Ax ∧ (nConj) (Section 4);

(C2) combine inductive reasoning with first-order reasoning to refute Ax ∧ NLem (Section 5).

For tackling challenge (C1), we use rewriting inferences to rewrite equal terms and generate
auxiliary lemmas. However, such proof steps cannot always be performed with the ubiquitous
(ordered) superposition inferences. Let us use a Knuth-Bendix simplification ordering (KBO)
≻ [30] parameterized by a constant weight function and the precedence ≫:

d≫ c≫ g ≫ f ≫ (J.K)≫ (@)≫ (+)≫ cons≫ nil≫ s≫ 0

The ordering ≻ cannot orient the equalities of (plus.2) and (ax.3) right-to-left so that clause (2)
could be derived by rewriting. Moreover, axioms, such as (ax.1)–(ax.3) that implicitly specify
program functionalities, cannot be oriented to avoid a search space explosion due to superpo-
sition inferences. Addressing such obstacles, we introduce an extension of the superposition
calculus (Section 4) to enable generating auxiliary lemmas during saturation. Our extension
solves challenge (C1) and provides an efficient reasoning backend for challenge (C2).

3 Theoretical Background

We assume familiarity with many-sorted first-order logic with equality. Variables are denoted
with x, y, z, terms with s, t, u, w, l, r, all possibly with indices. A term is ground if it contains
no variables. We use the standard logical connectives ¬, ∨, ∧, → and ↔, and quantifiers ∀
and ∃. A literal is an atom or its negation. The literal L denotes the complement of literal L.
A disjunction of literals is a clause. We denote clauses by C,D and reserve the symbol □ for
the empty clause that is logically equivalent to ⊥. We refer to the clausal normal form of a
formula F by cnf(F ). We assume that cnf preserves satisfiability, i.e. F is satisfiable iff cnf(F )
is satisfiable. We use ≃ to denote equality and write ▷◁ for either ≃ or ̸≃.

A position is a finite sequence of positive integers. The root position is the empty sequence,
denoted by ϵ. Let p and q be positions. The concatenation of p and q is denoted by pq. We
say that p is above q if there exists a position r such that pr = q, denoted by p ⩽ q. We say
that p and q are parallel, denoted by p ∥ q, if p ⩽̸ q and q ⩽̸ p. We say that p is to the left
of q, denoted by p <l q, if there are positive integers i and j, positions r, p′ and q′ such that
p = rip′, q = rjq′ and i < j.

An expression E is a term, literal, clause or formula. We write E[s]p to state that the
expression E contains some distinguished occurrence of the term s at some position p. We
might simply write E[s] if the position p is not relevant. Further, E[s 7→ t] denotes that this
occurrence of s is replaced with t; when s is clear from the context, we simply write E[t]. We
say that t is a subterm of s[t], denoted by t ⊴ s[t]; and a strict subterm if additionally t ̸= s[t],
denoted by t◁s[t]. A substitution is a mapping from variables to terms. We denote substitutions
by θ, σ, ρ, µ, η. A substitution θ is a unifier of two terms s and t if sθ = tθ, and is a most
general unifier (denoted mgu(s, t)) if for every unifier η of s and t, there exists a substitution
µ s.t. η = θµ.

2See Appendix A of the extended version [22] of this paper for details.
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s[u] ▷◁ t ∨ C l ≃ r ∨D
(Sup)

(s[r] ▷◁ t ∨ C ∨D)θ
where

(1) u is not a variable,
(2) θ = mgu(l, u),
(3) rθ ̸⪰ lθ and tθ ̸⪰ s[u]θ,

s ̸≃ t ∨ C
(EqRes)

Cθ
where θ = mgu(s, t),

s ≃ t ∨ u ≃ w ∨ C
(EqFac)

(s ≃ t ∨ t ̸≃ w ∨ C)θ
where

(1) θ = mgu(s, u),
(2) tθ ̸⪰ sθ and wθ ̸⪰ tθ.

Figure 2: The superposition calculus Sup for first-order logic with equality.

Let → be a binary relation. The inverse of → is denoted by ←. The reflexive-transitive
closure of → is denoted by →∗. A binary relation → over the set of terms is a rewrite relation
if (i) l → r ⇒ lθ → rθ and (ii) l → r ⇒ s[l] → s[r] for any term l, r, s and substitution θ.
A rewrite ordering is a strict rewrite relation. A reduction ordering is a well-founded rewrite
ordering. In this paper we consider reduction orderings total on ground terms. Such orderings
satisfy s ▷ t⇒ s ≻ t and are also called simplification orderings.

3.1 Saturation-Based Theorem Proving

We briefly introduce saturation-based proof search in first-order theorem proving. For details,
we refer to [20,28]. The majority of first-order theorem provers work with clauses, rather than
arbitrary formulas. Let S = A ∪ {¬G} be a set of clauses including assumptions A and the
clausified negation ¬G of a goal G. Given S, first-order provers saturate S by computing all
logical consequences of S with respect to a sound inference system I. This process is called
saturation. An inference system I is a set of inference rules of the form

C1 . . . Cn

C
,

where C1, . . . , Cn are the premises and C is the conclusion of the inference. We also write
C1, . . . , Cn ⊢I C to denote an inference in I; as I is sound, this also means that C is a logical
consequence of C1, . . . , Cn. We denote that I derives clause D from clauses C with C ⊢∗I D.
If the the saturated set of S contains the empty clause □, the original set S of clauses is
unsatisfiable, implying validity of A → G; in this case, we establish a refutation of ¬G from A.

Completeness and efficiency of saturation-based reasoning relies on selecting/adding clauses
from/to S using the inference system I. To constrain the inference system, some first-order
provers use simplification orderings on terms. Simplification orderings are extended to orderings
over literals and clauses using the bag extension of the ordering; for simplicity, we write ≻ both
for the term ordering and its clause ordering extensions. Given an ordering ≻, a clause C is
redundant with respect to a set S of clauses if there exists a subset S′ of S such that S′ implies
C and is smaller than {C}, i.e. S′ |= C and {C} ≻ S′.

The superposition calculus, denoted Sup and given in Figure 2, is the most common inference
system used by saturation-based first-order theorem provers [30]. We assume a literal selection
function satisfying the standard condition on ≻ and underline selected literals in Sup inferences.
The Sup calculus is sound and refutationally complete: for any unsatisfiable formula ¬G, the
empty clause □ can be derived as a logical consequence of ¬G.
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3.2 Inductive Reasoning in Saturation

Inductive reasoning has recently been embedded in saturation-based theorem proving [12, 33],
by extending Sup with a new inference rule. More precisely, we introduce a family of induction
inference rules parameterized by a second-order formula G with exactly one free second-order
variable F : the formula over which induction should be applied. Moreover, we restrict induc-
tions to a set of terms Ind(T ) ⊆ T where T is the set of all terms. Then, the inference rules
are of the following form:

L[t] ∨ C
(IndG)

cnf(¬G[L[x]] ∨ C)
where

(1) L[t] is ground and t ∈ Ind(T ),
(2) ∀F.(G[F ]→ ∀x.F [x]) is a valid

second-order induction schema.

By an induction axiom we refer to an instance of a valid induction schema. When performing
an IndG inference, the induction schema ∀F.(G[F ]→ ∀x.F [x]) is said to be applied on the clause
L[t] ∨ C, or alternatively speaking L[t] ∨ C is inducted upon; in addition, we also say that we
induct on term t in clause L[t]∨C with induction schema ∀F.(G[F ]→ ∀x.F [x]). For example,
using the schema (5), we parameterize the IndG schema with G := F [nil] ∧ ∀x, y.(F [y] →
F [cons(x, y)]) and obtain the IndG instance:

L[t] ∨ C
(IndG)

L[nil] ∨ L[cy] ∨ C
L[nil] ∨ L[cons(cx, cy)] ∨ C

where
(1) L[t] is ground,
(2) t ∈ Ind(T ) is of sort list,
(3) cx and cy are fresh Skolem symbols.

Note that the above IndG inference instance yields two clauses, where each clause results from
the clausification of schema (5) being resolved with the premise.

4 Efficient Rewriting in Saturation

As motivated in Section 2, rewriting derives clauses useful for auxiliary lemma generation that
Sup is not able to derive. We therefore focus on rewriting variants captured by the following
inference rule:

C[lθ] l ≃ r
(Rw)

C[rθ]

where θ is a substitution. We call an Rw inference a downward rewrite if lθ ≻ rθ, and call an
Rw inference an upward rewrite if lθ ≺ rθ.

We start by defining our base inference system, called the Rewriting Calculus (ReC), as
the calculus extending Sup with Rw. In other words, we define ReC to consists of the inference
rules of Sup∪{Rw}. The refutational completeness of ReC follows from the completeness of its
subsystem Sup. In addition to completeness, we consider the following property over inference
systems, and in particular over ReC.

Definition 1 (Equational derivability (ED)). Let θ be a substitution. An inference system I
admits equational derivability (ED) if, for any set of equations C, equation l ≃ r and clause
D[lθ], C ⊢∗I D[lθ] implies C, l ≃ r ⊢∗I D[rθ].

Equational derivability in Definition 1 essentially expresses that an inference system can sim-
ulate the application of the Rw rule, by some (possibly longer) derivation. This allows us to
introduce and compare variants of ReC, by imposing additional rewriting constraints in Rw.
We state the following, straightforward result.
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C0

C1

C6

C2

C3

C4

C5

D

C7

Figure 3: Possible rewrite sequences from a ground clause C0 to a ground clause D. The total
order between clauses is C1 ≻ C3 ≻ C2 ≻ C5 ≻ C0 ≻ D ≻ C6 ≻ C4 ≻ C7, as also visualized by
the vertical alignment of clauses.

Theorem 1 (ReC–ED). The inference system ReC admits ED.

In the sequel, we develop three improved variants of ReC that admit ED, and thus derive the
same consequences with equations as ReC does.

4.1 Peak Elimination in ReC

Let C be a satisfiable set of clauses. Suppose there is some ground clause D that triggers
the generation of a necessary inductive axiom, and suppose D can be derived from C via
rewrites with equations in C. Hence our goal is to derive D. In Figure 3, we show3 possible
ways to derive D from a ground clause C0 ∈ C using equations in C. Arrows of Figure 3
point in the direction of deduction. Assume that all clauses in Figure 3 are ground; using
a total simplification ordering ≻ over ground clauses, we order clauses in Figure 3 as given
by their vertical alignment in Figure 3. Therefore, an arrow going vertically upwards (resp.
downwards) in Figure 3 corresponds to an upward (resp. downward) rewrite variant of Rw. We
use three different arrows in Figure 3, corresponding to paths available at different saturation
steps (iterations) while saturating C:

(1) Arrows designate a path which is possible in a certain iteration i during saturation,
that is with equations available at iteration i.

(2) Arrows correspond to paths in later iterations than i but not necessarily at the end
of the saturation process.

(3) Arrows correspond to the “ideal path” at the end of the saturation process, that is,
when the equations are transformed into a set of equations corresponding to a complete
(confluent and terminating) rewrite system.

As shown by the many rewriting steps of Figure 3, choosing a path between C0 and D is not
trivial. For example, using arrows , we may derive D from C0 in iteration i already, but in
principle we have to exhaustively apply rewrites in all “directions”, resulting in many duplicate
clauses. A different strategy is to wait until saturation end, in which case using arrows
we rewrite C0 into its normal form C7, and then from C7 we reach D only by upward rewrites.
However, saturation may never terminate, for example in the presence of associativity and
commutativity (AC) axioms.

3similarly to [35].
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(nConj) Jg(d) @ f(c)K ̸≃ s(JcK + JdK)

(1) Jg(d) @ f(c)K ̸≃ s(JcK) + JdK

(2) Jg(d) @ f(c)K ̸≃ Jf(g(c))K + JdK

(3) Jg(d) @ f(c)K ̸≃ Jg(c)K + Jf(d)K

(4) Jf(d) @ g(c)K ̸≃ Jg(c)K + Jf(d)K

Jf(d) @ g(c)K ̸≃ s(JcK + JdK)

Jf(d) @ g(c)K ̸≃ s(JcK) + JdK
plus.2

ax.3
ax.2

ax.1
sup.1

ax.1

plus.2

sup.1ax.1

Figure 4: Possible rewrite sequences to derive clause (4) from (nConj) in the example of Sec-
tion 2.

Another option is to find a path of a specific form during saturation, such as the paths
designated by arrows in Figure 3. We propose to avoid so-called peaks during saturation,
where a peak comes with an upward rewrite followed by a downward rewrite. That is, upward
rewrites followed by downward rewrites should be avoided. Depending on the positions in which
the upward and downward rewrites happen, the following two possibilities occur:

(i) If the positions of upward and downward rewrites are parallel, the two rewrites can be
simply flipped. For example, the path C0 C1 C2 of Figure 3 is replaced by the path
C0 C6 C2.

(ii) If the positions are overlapping, there is a superposition between the two rewriting equa-
tions of the peak. This superposition inference generates an equation that “cuts” the
peak, giving a one-step rewrite alternative instead of two rewrites. For example, the peak
C4 C5 D can be replaced by C4 D. Note that sometimes multiple superpo-
sitions have to be performed before the path can be continued, e.g. the (double) peak
C6 C2 C3 C4 needs two superpositions to be eliminated, and performed simply
as C6 C4.

To avoid peaks in saturation, we distinguish clauses resulting from upward rewrites (annotated
as ■C) from other clauses (annotated as □C). We use the notation ◪C to denote either of
these. We might leave clauses without annotation if this information is not relevant in the
context. We split the Rw inference into two components, resulting in the following inferences:

□C[lθ] □l ≃ r
(Rw↓) □C[rθ]

where lθ ⪯̸ rθ,
◪C[lθ] □l ≃ r

(Rw↑) ■C[rθ]
where lθ ⪰̸ rθ.

We denote our ReC variant for avoiding peaks in saturation by ReC∨, and define ReC∨ to
consist of the inference rules of Sup ∪ {Rw↓,Rw↑}.

Remark 1. Note that the Rw↓ and Rw↑ rules both allow rewriting with incomparable equa-
tions. The reason for this is that disallowing rewrites with incomparable equations after upward
rewrites violates ED in some cases 4.

4See Appendix B of our extended paper [22] for details.
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a @ b

c @ b
a @ d

c @ d

(a)

a @ b

c @ ba @ d

c @ d

(b)

a @ b

c @ b
a @ d

c @ d

a @ b

c @ b
a @ d

c @ d

(c)

Figure 5: Possible parallel rewrites in ReC given equations a ≃ c, b ≃ d with a ≻ c and b ≻ d.
Rewrites corresponding to crossed out arrows are not performed in the left-to-right order.

Example 1. Solid blue lines ( ) in Figure 4.1 show the sequence of rewrite steps to reach
clause (4) from clause (nConj) within the motivating example of Section 2, when using ReC.

Alternatively, we can perform the following steps with ReC∨. A superposition into
clause (ax.2) with (ax.3) results in

Jg(x)K + Jf(y)K ≃ s(JxK) + JyK. (sup.1)

Using clause (sup.1), we eliminate the peak through clause (2), and directly derive clause (3)
from clause (1) in ReC∨. Note that we can switch the order of rewrites using clauses (ax.1) and
(plus.2); and similarly the order of rewrites using clauses (ax.1) and (sup.1). We thus obtain
the ReC∨ derivation of clause (4) via rewriting clause (nConj) with (ax.1), then with (plus.2),
and finally with (sup.1).

We conclude our presentation of ReC∨ with the following result.

Theorem 2 (ReC∨–ED). The inference system ReC∨ admits ED.

4.2 Diamond Elimination in ReC

Note that rewrites in parallel positions can be performed in any order. If the rewriting is per-
formed in all possible orders, this leads to a large number of duplicated clauses. In this section,
we restrict ReC and ReC∨ to eliminate this effect, while preserving equational derivability
from Definition 1.

Figure 5 illustrates rewriting possibilities for two parallel rewrites with ReC. Depending on
the direction of the rewrites, there are three possibilities, that is, three “diamonds”: Figure 5(a)
shows two downward rewrites; Figure 5(b) illustrates two upward rewrites; while Figure 5(c)
shows one downward and one upward rewrite. Note that Figure 5(c) contains two subcases,
one where the upward rewrite happens in the left position and one where it happens in the
right position. We denote the positions to be rewritten with boxes, e.g. a . To generate all
terms in these diamonds without duplicating any terms, we follow the tradition of reduction
strategies in programming languages, for example leftmost-outermost (also call-by-need) and
leftmost-innermost (also call-by-value) strategies [2]. We choose a left-to-right rewriting order,
that is, we cannot perform a rewrite to the left of the previous rewrite. In Figure 5, the skipped
rewrites are crossed out in red.

Figure 5(a) and Figure 5(b) are the same in ReC∨. However, ReC∨ avoids duplication of
Figure 5(c) in the first place (recall the parallel positions in Figure 3). Therefore, in the case
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of ReC∨, we only apply the left-to-right order in the case of multiple consecutive Rw↓ (resp.
Rw↑) inferences. Towards this, we associate with each clause C a position p where the previous
rewrite was performed. We denote such clauses by pC. Our modified Rw rule for avoiding
duplicated diamonds is:

pC[lθ]q l ≃ r
(Rw→)

qC[rθ]q
where q ≮l p.

Our ReC variant for avoiding duplicated diamonds during rewritings is denoted by ReC→ and
is defined to be Sup ∪ {Rw→}. We state the following result.

Theorem 3 (ReC→–ED). The inference system ReC→ admits ED.

Finally, we define a ReC variant that combines peak-elimination with left-to-right rewriting or-
ders. We denote this ReC variant by ReC→

∨ . Here, we enforce the left-to-right order separately
between downward and upward rewrites, as captured via the following Rw variants:

□
p C[lθ]q

□l ≃ r
(Rw→

↓ )
□
q C[rθ]q

where
(1) lθ ⪯̸ rθ,
(2) q ≮l p,

◪
p C[lθ]q

□l ≃ r
(Rw→

↑ )
■
q C[rθ]q

where
(1) lθ ⪰̸ rθ,
(2) ◪

p C[lθ] = □
p C[lθ] or q ≮l p.

Our inference system ReC→
∨ is defined as Sup∪{Rw→

↓ ,Rw→
↑ } and has the following property.

Theorem 4 (ReC→
∨ –ED). The inference system ReC→

∨ admits ED.

5 Redundancy and Induction

As mentioned in Section 1, the Sup calculus tries to derive and retain as few clauses as possible
without losing (refutational) completeness. Within the ReC calculus, as well as within its three
refinements ReC∨, ReC→ and ReC→

∨ , however, we not only derive more consequences, but
we also avoid simplifications, resulting in less efficient reasoning than via Sup. The situation
gets even worse when the prolific IndG rule is used to enable inductive reasoning.

As a remedy, this section integrates redundancy elimination within ourReC calculi extended
with IndG inferences. Our main goal is to be as efficient as possible without losing inductive
proofs. This includes, for example, preserving the ED property for our calculi extended with
IndG. We introduce sufficient criteria to skip induction inferences in ReC, and weaken the ED
restriction to avoid deriving useless clauses for first-order and inductive reasoning.

We identify induction inferences that can be omitted without losing proofs and provide
efficient ways to detect such (redundant) inferences.

Remark 2. Note that constructor-based induction schemas give rise to a few optimisations:

(1) Inducting on t in L[t] ∨ C where t has zero occurrences is possible, but using constructor-
based induction schemas only results in tautological clauses L ∨ ¬L ∨ C and clauses with
duplicate literals L ∨ L ∨ C. We thus omit inducting on t in L[t] ∨ C where t has zero
occurrences.
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(2) Inducting on base constructors, such as 0 and nil, only give weaker forms of the same clauses.
For example, inducting upon nil in L[nil]∨C yields clauses of the form L[nil]∨C ′ ∨C. We
thus omit induction on base costructors.

While the inductive inferences described in Remark 2 can easily be detected, this is not the
case with more complex but useless inductive inferences, as shown in the next example.

Example 2. Consider the IndG inferences on term c in clauses (nConj) and (2), respectively.
The first IndG inference yields clauses

Jg(d) @ f(nil)K ̸≃ s(JnilK + JdK) ∨ Jg(d) @ f(c2)K ≃ s(Jc2K + JdK)
Jg(d) @ f(nil)K ̸≃ s(JnilK + JdK) ∨ Jg(d) @ f(cons(c1, c2))K ̸≃ s(Jcons(c1, c2)K + JdK)

where c1 and c2 are fresh Skolem constants. The second IndG inference yields clauses

Jg(d) @ f(nil)K ̸≃ Jf(g(nil))K + JdK ∨ Jg(d) @ f(c4)K ≃ Jf(g(c4))K + JdK
Jg(d) @ f(nil)K ̸≃ Jf(g(nil))K + JdK ∨ Jg(d) @ f(cons(c3, c4))K ̸≃ Jf(g(cons(c3, c4)))K + JdK

where c3 and c4 are fresh Skolem constants. The induction formulas used in the two IndG
inferences are equivalent w.r.t. axioms (nat.1)–(ax.3), hence it is sufficient to perform only one
inference and retain the corresponding conclusions. This is unfortunately hard to detect due to
the different sets of Skolem constants c1, c2 and c3, c4. For example, simplifying the induction
formulas and checking them for equivalence before clausification takes considerable effort.

For detecting redundancies similar to Example 2, we characterize redundant induction inferences
of interest and introduce sufficient conditions to efficiently detect them.

Definition 2 (Redundant IndG inference). Let I be an inference system that admits ED, C
a clause and F a formula. The IndG inference C ⊢ cnf(F ) is redundant in I ∪ {IndG} w.r.t. a
set of equations E and a clause C ′, if C ≻ C ′ and there is a formula F ′ and an IndG inference
C ′ ⊢ cnf(F ′) s.t. F and F ′ are equivalent modulo rewriting with E.

It is easy to see that only non-redundant IndG inferences need to be performed to retain equa-
tional consequences and first-order refutations. The following two lemmas show sufficient con-
ditions to efficiently check for redundant induction inferences.

Lemma 1 (Redundant IndG – Condition I). Let l ≃ r and L[t]∨C be clauses, x a fresh variable,
and I an inference system that admits ED. If there is a substitution θ s.t. lθ ◁L[x] and lσ ≻ rσ
where σ = θ · {x 7→ t}, then the IndG inference

L[t] ∨ C ⊢ cnf(¬G[L[x]] ∨ C)

is redundant in I ∪ {IndG} w.r.t. the clauses l ≃ r and (L[t])[lσ 7→ rσ] ∨ C.

Lemma 2 (Redundant IndG – Condition II). Let l ≃ r and L[t] ∨ C be clauses, x a fresh
variable, and I an inference system that admits ED. If there is a substitution θ s.t. lθ ⊴ t and
lθ ≻ rθ, then the IndG inference

L[t] ∨ C ⊢ cnf(¬G[L[x]] ∨ C)

is redundant in I ∪ {IndG} w.r.t. the clauses l ≃ r and L[t[lθ 7→ rθ]] ∨ C.
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Lemmas 1–2 allow us to check for redundant IndG inferences similarly as performing demod-
ulation, i.e. simplification by downward rewrites [18]. A consequence of these lemmas is that
any non-redundant IndG inference on a clause that could be simplified by demodulation must
induct on a subterm of a demodulatable term (i.e. a term that could be downward rewritten
into a smaller term). The converse, however, that every subterm of a demodulatable term gives
rise to a non-redundant IndG inference, does not hold in general.

Example 3. As shown in Example 2, the IndG inference on clause (2) using induction term c is
redundant w.r.t. clause (ax.3) and (nConj) due to Jf(g(c))K ≻ s(JcK). The only non-redundant
IndG inferences on clause (2) w.r.t. clause (ax.3) thus induct on the subterms f(g(c)) or g(c)
of Jf(g(c))K.

To control over which clauses induction should be triggered, we introduce the following notion
for clauses that are not directly usable as premises for induction inferences.

Definition 3 (Inductively redundant clause). A clause is inductively redundant if it is (first-
order) redundant and all IndG inferences on it are redundant.

The following example shows an inductively redundant clause.

Example 4. Continuing Example 3, the term Jg(d) @ f(c)K in clause (2) can be demodulated,
namely into Jf(d) @ g(c)K by clause (ax.1). This makes inducting only on the subterms g(d),
f(c) or g(d) @ f(c) non-redundant. As Jf(g(c))K and Jg(d) @ f(c)K render all IndG inferences
on the subterms of each other redundant, clause (2) is inductively redundant.

An inductively redundant clause is only necessary to preserve the ED property. Next, we show
how some inductively redundant clauses can be avoided without losing ED. Towards this, we
define so-called ineffective equations.

Definition 4 (Ineffective equation). An equation l ≃ r is ineffective if l ≻ r, each variable in l
has at most one occurrence and there is no strict non-variable subterm s in l s.t. sθ ∈ Ind(T )
for some substitution θ. An equation is called effective if it is not ineffective. We call an upward
rewrite with an ineffective equation an ineffective rewrite.

The following example shows ineffective equations.

Example 5. As discussed in Remark 2, base constructors such as 0 and nil are not inducted
upon when using only constructor-based induction schemas; hence, 0, nil /∈ Ind(T ). The equa-
tions (plus.1), (append.1) and (length.1) are therefore ineffective, since they are oriented left-
to-right, their left-hand sides are linear, and none of the strict non-variable subterms in their
left-hand sides are inducted upon.

The following lemma proves that the result of an ineffective rewrite is inductively redundant.

Lemma 3 (Redundancy of ineffective rewrites). Let l ≃ r be an ineffective equation and C[lθ]
a clause. If C[lθ] ≻ (l ≃ r)θ, the clause C[lθ] is inductively redundant in any inference system
that admits ED.

Consider a derivation of Rw inferences from an inductively non-redundant clause C into an
inductively non-redundant conclusion D, where every intermediate clause in the derivation
is inductively redundant. We may notice in such derivations that an ineffective rewrite is
eventually followed by a rewrite that is not ineffective in an overlapping position. These rewrites
can be performed together to avoid the intermediate inductively redundant clauses. To control
and trigger such rewriting chains, we introduce the following chaining inferences.
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C[lθ] l ≃ r
(CRw)

C[rθ]
where lθ ⊀ rθ or l ≃ r is effective,

s[l′] ≃ t l ≃ r
(Chain1)

(s[r] ≃ t)θ
where

(1) θ = mgu(l, l′),
(2) s[l′] ≃ t is ineffective,
(3) lθ ̸⪰ rθ and l ≃ r is effective,

s ≃ t[l′] l ≃ r
(Chain2)

(s ≃ t[r])θ
where

(1) θ = mgu(l, l′),
(2) l ≃ r is ineffective,
(3) t[l′]θ ̸⪰ sθ and s ≃ t[l′] is effective.

The chaining inferences Chain1 and Chain2 combine ineffective and effective equations together in
new, effective equations. Further, CRw disallows ineffective rewrites for consequence generation.
By using chaining inferences for efficient rewrites in saturation with induction, we define the
calculus CReC as Sup∪{CRw,Chain1,Chain2}. While CReC does not admit ED, we note that
if an inductively non-redundant clause D is derivable via Rw in ReC, then D is also derivable
using chaining inferences in CReC. That is, inductive consequences are not lost in CReC.
The following theorem adjusts such a variant of ED to CReC.

Theorem 5 (CReC derivability). Let D be an inductively non-redundant clause. If C ⊢∗{Rw} D,
then C ⊢∗{CRw,Chain1,Chain2} D.

The calculi CReC∨, CReC→ and CReC→
∨ are respectively the variants of ReC∨, ReC→ and

ReC→
∨ , when using Chain1 and Chain2, and restricting the Rw variants in these calculi to be

used with effective equations similarly as in CRw.5 Derivability results for these calculi similar
to Theorem 5 are straightforward based on Theorems 2–5.

6 Evaluation

Implementation. We implement our calculi in the Vampire6 prover. Our framework for
equational consequence generation is controlled via the new option -grw which has the following
values: off disables equational consequence generation and uses only the Sup calculus; all
uses the calculus ReC; up uses ReC∨; ltr uses ReC→; and up ltr uses ReC→

∨ . With the
further option -mgrwd, we limit the maximum depth of rewrites for Rw inference variants. The
option -grwc toggles the chaining inferences, that is, the use of CReC variants. Finally, the
option -indrc controls the redundancy check for induction, by using Lemmas 1–2 to avoid
performing redundant IndG inferences.

Additionally, we use the following heuristics to control consequence generation in saturation
with induction. We apply rewriting in a goal-oriented manner, only allowing rewriting into
conjectures or into clauses derived from conjectures (subgoals). Moreover, to avoid useless
clauses from rewriting between unrelated subgoals, we disallow rewriting inferences which would
introduce new Skolem constants into a clause. Finally, we avoid rewriting inferences which
introduce variables into our conjectures, as these have to be instantiated before induction.

Experimental setup. We run our experiments with the following option setup: -sa discount

to use the Discount saturation algorithm [13]; -drc encompass to enable encompassment

5See Appendix C of our extended paper [22].
6https://github.com/vprover/vampire/commit/16a38442515f8385
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-indrc off Sup ReC ReC∨ ReC→ ReC→
∨ CReC CReC∨ CReC→ CReC→

∨
KBO 270 290 290 290 291 302 305 302 302
LPO 290 318 320 322 320 331 332 332 332

-indrc on Sup ReC ReC∨ ReC→ ReC→
∨ CReC CReC∨ CReC→ CReC→

∨
KBO 270 299 299 301 300 305 304 307 307
LPO 290 321 319 322 321 333 333 330 329

Figure 6: Comparison of the Sup calculus with variants of the ReC and CReC calculi, using
1266 inductive benchmarks. Redundant IndG inference detection is disabled (resp. enabled) in
the top (resp. bottom) table with option -indrc off (resp. -indrc on). Maximum rewriting
depth (-mgrwd) is set to 3. Bold entries show the maximum number of solved benchmarks
among each subgroup.

demodulation [15]; and -thsq on to control pure theory derivations [19]. Experiments were
run on computers with AMD Epyc 7502 2.5GHz processors and 1TB RAM, with each indi-
vidual benchmark run given a single core. For inductive reasoning experiments, we used the
UFDTLIA benchmark set from SMT-LIB [4], the TIP benchmark set [9] and the Vampire
inductive benchmark set [21]. We also used benchmarks from the UEQ division of TPTP [36]
to test first-order reasoning.

Evaluation of inductive reasoning. The first part of our experiments consisted of running
Vampire on 1266 inductive benchmarks from the UFDTLIA, TIP and Vampire benchmark
sets. We used a 60-second timeout and the options -ind struct -indoct on to enable induc-
tion and generalisations over complex terms. We used two different simplification orderings:
-to kbo for KBO ordering with constant weight and precedence determined by the arity of sym-
bols; -to lpo -sp occurrence for the LPO ordering with a symbol precedence given by the
declaration order. This LPO order is usually better at orienting recursive function axioms [23].

Our results are summarised in Figure 6, showcasing that each ReC and CReC calculi
variant performs significantly better than Sup. Using the LPO ordering turned out to be ad-
vantageous over the KBO ordering. Performance is further improved via detection of redundant
IndG inferences and using chaining inferences via CReC variants. Among each group, however,
the differences in the number of solved benchmarks are minimal, and there is no calculus that
is a clear winner in all configurations. Statistics reveal that redundant IndG inference detection
used together with ReC was able to eliminate 79.3% of the overall 390,657,294 IndG inferences,
while redundant IndG inference detection in CReC variant runs detected 42.6% of the over-
all 169,457,851 IndG inferences redundant. This suggests that both redundant IndG detection
and chaining inferences in CReC variants are effective in keeping the search space small. In
total, the configurations for the ReC and CReC variants solved 45 problems that no Sup
variant could solve. Based on these results, we conclude that rewriting in inductive reasoning
significantly improves upon standard superposition.

Figure 7 shows cactus plots [7] within the LPO configuration of Sup, ReC and CReC
variants, and ReC and CReC variants with redundant IndG inference detection. Each plot line
lists the logarithm of the time needed (vertical axis) to solve a certain number of the benchmarks
(horizontal axis) individually, for a particular configuration. The left diagram shows the entire
plot, and the right diagram a magnified (and rescaled) plot above 180 problems. The baseline
configuration Sup is a bit faster than the ReC variants up to around 260 problems, and after
that it only solves a few problems in the several seconds region. The ReC variants without
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Figure 7: Plots of (logarithmic) time against number of problems that would be solved individ-
ually given that time limit. Selected configurations, all using LPO.

redundant IndG detection are almost indistinguishable in the entire plot. The ReC calculus
with redundant IndG detection is however better, while there is a greater gap between the
Sup and ReC calculi and the two CReC variants. The CReC calculus with redundant IndG
detection has the slowest growing curve, corresponding to the fastest solving times.

Evaluation of first-order reasoning. We also measured how our calculi behave with pure
first-order problems. In particular, we have run experiments on the UEQ division of TPTP us-
ing the CASC2019 portfolio mode of Vampire with a 300 seconds timeout (--mode portfolio

-sched casc 2019 -t 300). While our calculi performed slightly worse than Vampire portfo-
lio, they managed to solve a few unique and hard UEQ problems Vampire without consequence
generation could not solve: GRP664-12 (rating 0.96), COL066-1 (rating 0.79), LAT166-1 (rating
0.71), LAT156-1 (rating 0.71) and REL026-1 (rating 0.67). As such, our work is useful not only
for inductive, but also for first-order reasoning.

7 Related Work and Conclusion

We improve the generation of equational consequences within saturation-based theorem proving
extended with inductive reasoning. The generated consequences serve as auxiliary lemmas to
be used for proving (inductive) goals.

While auxiliary lemmas might be provided by users in interactive theorem proving [14,
31], saturation-based automated theorem provers, by design, do not support user guidance
during proof search. Automation of induction in saturation therefore implements inductive
generalizations [1, 12, 24, 33], uses failed proof attempts [8], specialized sound inferences with
common patterns [38], or integrates induction directly into saturation [16,27]. Our work extends
these techniques by guiding proof search with auxiliary lemmas generated during proof search.
Lemma generation is also exploited in theory exploration [10, 25], without however imposing
the relevance of generated lemmas with respect to a given conjecture. SMT solvers alleviate
this by integrating theory exploration with built-in theory reasoning [34].

The use of equational theories and term rewriting in inductive reasoning has been addressed
in [6], by ensuring termination of function definitions, and in [23,38], by using using completion
procedures [5,8] to interleave heuristic rewriting with theorem proving. Our work complements
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these approaches, by using rewriting-based equational reasoning for auxiliary lemma gener-
ation, and extending redundancy elimination in inductive reasoning. Our experiments have
shown a significant improvement in inductive reasoning and equational first-order reasoning,
solving 45 new inductive problems and 5 hard TPTP problems when compared with standard
superposition.

Integrating our method with proof assistants, e.g. Sledgehammer [14], is an interesting line
of future work, with the aim of splitting goals into subgoals described by auxiliary lemmas. Ap-
plying our approach to non-equational fragments, such as Horn formulas in equational logic [11],
is another future challenge.
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