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Abstract 
I consider the problem of attempting to constrain the behaviour of artificial 

intelligence software to prevent it from carrying out unwanted, dangerous, or malicious 
operations. I shall analyse a medical appliance scenario: the artificial pancreas. I shall 
model a diabetes patient as a system which contains a certain level of insulin and a certain 
level of glucose at any given point in time, and may be engaged in eating, rest, or exercise. 
Sugar levels will be lowered using up some insulin. Exercise will also contribute to 
lowering sugar levels. The artificial pancreas will periodically inject some more insulin 
into the patient depending on decisions made by an AI-driven control system when it is 
provided with monitoring data and it is intended to learn over time how best to manage 
the patient’s glucose levels.  There is also a safety system which may decide to suspend 
the AI system and trigger a manual or algorithmic override should a particular threshold 
be breached.  I shall use the CSP process algebra to represent the processes and the 
associated FDR proof tool to deduce properties about their behaviour. 
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1 Introduction 
We are living in a time when artificial intelligence is almost never out of the news and the field is 

coming of age and penetrating many mainstream aspects of our society. The theoretical origins of AI 
go back to the days of Alan Turing, but we have only recently arrived at a situation where the computing 
power available to end users has crossed a threshold which makes AI readily available on a large scale. 
Possibilities of AI that were once in the realm of science fiction are becoming commonplace. We 
already have driverless cars on the streets in California.  AI is being used for medicinal purposes to 
diagnose and treat illnesses. It is being used in creation of documentation and programming code.  It 
proliferates in the worlds of music and art. And it is increasingly used for both cyber security and cyber 
terrorism. There are both significant opportunities and threats to humans within the realm of artificial 
intelligence.  The latter concern has led to the UK government recently setting up the AI Safety Institute 
to “minimise surprise to the UK and humanity from rapid and unexpected advances in AI” [1]. 
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In this paper I shall consider the specific problem of building guardrails to prevent AI control 
systems from running amok and making dangerous or malicious decisions with potentially devastating 
impact [2]. I have considered three areas to help illustrate this problem.  

 
The first of these is the automated construction and pricing of insurance policies: a role that is 

typically carried out by actuaries and underwriters in the Lloyd’s Insurance Market. It is in the nature 
of AI systems that they are trained in specific domains using relevant training sets of data, and then 
adapt their behaviours as they learn from their experience. They may perform tasks representative of 
human activities proficiently in those areas where they have been trained but doubts persist as to what 
they might do should they be plunged into a context which has not been explored as part of their training. 
The insurance industry is heavily regulated, and this regulation has largely come due to failings in the 
past where insufficient funds might have been put aside to payout to policy holders in the event of them 
experiencing major losses due to large volumes of claims occurring due to unforeseen events. In the 
case of the Lloyd’s Insurance Market there was a major crisis in the 1980s when asbestos-related losses 
surfaced, covered by historical policies, which were devastating to investors. It is hard to see how an 
AI pricing engine could have reliably foreseen the possible appearance of a previously unknown health 
condition that took decades to emerge after the policies were priced. It would be interesting to consider 
how guardrail software could be used to warn against possible issues arising from decisions made by 
AI in this context. 

 
A second problem that interests me is the safety of driverless cars. As a driver I have occasionally 

encountered very difficult driving conditions which I had never experienced before. For instance, I have 
been caught driving on a narrow coastal road in thick fog with very little visibility. I have also found 
myself driving on an icy country lane with many potholes in a blizzard. So, I wonder what would happen 
to an AI self-learning system, driving a car if it were suddenly to encounter a situation that had not been 
seen before in any of the training data? If I were travelling in such a vehicle, I would want some 
assurance of safety perhaps provided by an early warning system and the possibility of manual override.  

 
Both above scenarios are of considerable interest to me, however I have decided to select the 

phenomenon of AI-driven medical appliances for a slightly deeper dive. These have the potential to 
save and extend lives but also carry risks of doing immeasurable harm to the individuals who depend 
upon them. I shall be looking at the artificial pancreas concept and how this might be prevented from 
accidentally causing harm by using a guardrail process. I am using the CSP and FDR technologies to 
analyse this space. Below, I shall describe how to model a highly simplified version of an interesting 
prototype system, called PEPPER [3] and then how these tools provide insights into its behaviour. 

2 Case Study 
The PEPPER system [3] was not in itself an artificial pancreas, it was more in the nature of an AI-

informed decision support system which ran on a mobile phone. It was connected to certain monitoring 
apparatuses and would make recommendations to a person with diabetes as to how much insulin to 
ingest. It acted as a prototype for a real artificial pancreas that could be of huge benefit to those who 
suffer from type 1 diabetes.  

 
PEPPER was developed by a consortium of scientists from Oxford Brookes University Imperial 

College London and the Institut d'Investigació Biomèdica de Girona. The system was tested on a group 
of adult volunteers and was found to improve the management of their condition. 
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Each patient using this system had the glucose level in their blood continually monitored by a 
wearable device, an insulin pump to supply multiple daily injections of insulin directly into their blood, 
an activity monitor which measures when they are exercising or at rest, and they were also required to 
enter information about all the food they consumed manually through the graphical user interface of the 
mobile application that ran on their phones. The mobile application included two AI tools: one was the 
Bolus Recommender which made recommendations to the patient about how much insulin to inject 
using the pump, and the other was the safety system which would predict the likelihood of impending 
adverse events: hypoglycaemia or hyperglycaemia, allowing patients to make informed dosing 
decisions. 

 
The study concluded the following. “A safety system for an insulin dose recommender has been 

proven to be a viable solution to reduce the number of adverse events associated to glucose control in 
type 1 diabetes.” 

3 Analysis using CSP 
The CSP language of CAR Hoare (Communicating Sequential Processes) [4, 5, 6, 7, 8, 9] is a 

notation for describing patterns of communication by algebraic expressions. It is widely used for design 
of parallel and distributed hardware and software and for the formal proof of vital properties of such 
systems. (However, without computer assistance it is often impractical to prove such properties, 
algebraically, other than for very simple systems.) The grammar of CSP is shown in Figure 1 

 
Figure 1. Grammar of the core CSP Language 
 
The FDR tool (Failures Divergences Refinement) [8] provides an automated proof system for the 

CSP language when it is expressed in a machine readable format. In the following section we shall 
construct a model of an artificial pancreas system and provide a safety mechanism which runs alongside 
the AI control system. We shall then use FDR to reason about the behaviour of this system and how it 
might help to prevent adverse events for the patients.  

 
An individual’s blood glucose level is affected by multiple factors, including carbohydrate 

consumption, physical activity, ambient temperature, illness, stress, sleep and insulin on board. We 
consider only carbohydrates and exercise for the purposes of this model. 
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We start by defining the CSP code to describe the system in question. We define some 
communication channels and their types. The channel ‘measure’ is used to connect the patient to the 
monitoring device and is used to return three measured values. These values are the level of glucose in 
the blood, whether or not eating has taken place since the last observation, and whether or not exercise 
has taken place since the last observation. We also define channels to represent the acts of eating and 
exercising by the patient, the decision by either the AI engine or the safety algorithm to inject some 
insulin. 

 
channel measure, signal_ai, signal_alg: {0..9}.{0,1}.{0,1} 
channel eat, exercise, inject_ai, inject_alg, inject: {0,1} 
channel tock, alert 
 
We define utility functions to calculate maximum and minimum of two numbers as follows. 
 
max(a,b) = if a>b then a else b 
min(a,b) = if a>b then b else a 
 
Now let us define a process to represent a patient.  This is simplified – we use abstract units to 

quantify insulin, time, food consumption and energy. It would be vital that this would be made into a 
far more realistic model if this approach were to be used for real. So, a patient is modelled as a process 
which maintains certain levels of glucose and insulin and at specified points in time may eat, exercise, 
rest or receive an injection of insulin. The ‘tock’ event represents the cadence of the monitoring 
intervals. 

 
PATIENT(glucose, insulin) = tock -> eat?food -> exercise?activity -> 
  if (insulin > 0 and glucose > 0 and food == 1) then 
    measure!glucose.1.activity -> inject?dose ->  
      PATIENT(glucose, insulin-1+dose)  
  else if (insulin == 0 and glucose < 9 and food == 1) then 
    measure!(glucose+1).1.activity -> inject?dose -> 
      PATIENT(glucose+1,dose) 
  else if (glucose > 0 and activity == 1) then  
    measure!(glucose-1).food.1 -> inject?dose ->  
      PATIENT(glucose-1, min(insulin+dose,9)) 
  else if (insulin > 0 and glucose > 0 and food == 0) then 
    measure!(glucose-1).0.activity -> inject?dose ->  
      PATIENT(glucose-1, insulin-1+dose)  
  else  
    measure!glucose.food.activity -> inject?dose ->  
      PATIENT(glucose, min(insulin+dose,9))   
Note that the use of ‘min’ and ‘max’ functions here is a necessary trick to prevent the Patient model 

from becoming infinite state, which would break the automated checks carried out by FDR.  We impose 
sufficiently high, but abstract, upper bounds for levels of glucose and insulin, which we can show will 
not impact on the level of reality within this model. 

 
The Monitor process retrieves information from the patient about glucose levels, food, and activity 

on every time interval. If the glucose level goes above a dangerous threshold where a ‘hyper’ could take 
place it will then execute an ‘alert’ event and then stop and deadlock the whole control system. (We 
should also check for ‘hypo’ events  but that is left out here to preserve simplicity in this model.) The 
purpose of the alert would be to hand control over to the patient however the intention is that that should 
not happen as it would have already handed over the control to an algorithmic dosing system before the 
glucose level could ever rise that high. 
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An algorithmic system might not be as effective as an AI system in managing the stability of the 
insulin levels, because the AI system can potentially learn from its mistakes and converge towards an 
optimal dosing regime. But on the other hand, it will hopefully provide an upper bound as to the level 
of insulin that should be in the system within the constraints of how the simulated human body works. 

 
MONITOR(overidden) =  
  tock -> measure?glucose.food.activity ->  
    if glucose > 8 then  
      alert -> STOP  
    else if (not overidden and glucose < 8) then 
      signal_ai!glucose.food.activity -> MONITOR(false)    
    else  
      signal_alg!glucose.food.activity -> MONITOR(true)  
  
We model the AI Pancreas algorithm as something that is completely unpredictable and potentially 

might perform any dangerous or malicious act.  This is similar to how intruders are modelled in the 
CSP treatment of cryptographic protocol vulnerability by Lowe, Roscoe and others [10, 11, 12]. 

 
AI_PANCREAS =  
  signal_ai?glucose.food.activity ->  
    ((inject_ai!1 -> AI_PANCREAS) |~| (inject_ai!0 -> AI_PANCREAS))  
 
On the other hand, we model the algorithmic Pancreas process as something which will always 

naively inject insulin if the residual blood sugar level is beyond a certain threshold and otherwise do 
nothing.  This could result in a see-sawing effect in terms of the blood sugar in the system and one 
would hope that a truly intelligent AI system would learn to handle that better over time, however it 
does provide predictable safety behaviour. 

 
ALG_PANCREAS =  
  signal_alg?glucose.food.activity -> if (glucose > 3) then 
    inject_alg!1 -> ALG_PANCREAS else inject_alg!0 -> ALG_PANCREAS 
 
The Injector process may receive instructions from either the AI process or the algorithmic process 

to inject insulin into the patient, which it will always follow. 
 
INJECTOR =  
  (inject_ai?x -> inject!x -> INJECTOR) []  
  (inject_alg?x -> inject!x -> INJECTOR) 
 
Now we compose all these components in parallel to create the CSP process network. (See figure 2 

for the process diagram.) 
 
 
SYSTEM =  
  ((AI_PANCREAS ||| ALG_PANCREAS) [|{|inject_ai, inject_alg|}|] INJECTOR) 
      [|{|signal_alg, signal_ai, inject|}|]  
  (MONITOR(false) [|{|measure, tock|}|] PATIENT(5,1)) 
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Figure 2. Communication Diagram. 
 
 
We assert that this system is deadlock free in the failures-divergences model which ‘means that the 

monitor never will trigger the ‘alert’ event and suspend the whole system – the safety system 
(algorithmic process) is doing its job. 

 
assert SYSTEM :[deadlock free [FD]] 
 
For the sake of completeness, we should also test this system with the safety system disabled. We 

change the monitor so that it always relies upon the potentially malicious AI algorithm. 
 
UNSAFE_MONITOR =  
  tock -> measure?glucose.food.activity ->  
    if glucose > 8 then  
       alert -> STOP  
    else  
      signal_ai!glucose.food.activity -> UNSAFE_MONITOR 
      
UNSAFE_SYSTEM =  
  ((AI_PANCREAS ||| ALG_PANCREAS) [|{|inject_ai, inject_alg|}|] INJECTOR) 
    [|{|signal_alg, signal_ai, inject|}|]  
  (UNSAFE_MONITOR [|{|measure, tock|}|] PATIENT(5,1)) 
 
We then run the same assertion on the unsafe system and we would expect to see this fail. 
 
assert UNSAFE_SYSTEM :[deadlock free [FD]] 
 
Figure 3 shows what we see within the FDR tool console when we load the CSP code and run the 

assertions. The system reports as we would expect that the first system is deadlock free and therefore it 
prevents the adverse hyperglycaemic event from happening. 
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Figure 3. FDR Console 
 
However the unsafe system which relies purely on the AI process, might deadlock and this 

corresponds to a serious adverse event occuring. A minimal sequence of events which triggers this is 
shown within the tool. It corresponds to the patient repeatedly eating and the AI system withholding 
any top-up insulin injections so that the blood sugar continues to rise until it hits a dangerous level 

 
  

 

 

 

 

 

 

 
 

  
Figure 4. FDR reports deadlock event trace. 

4 Conclusions 
Despite the simplicity of the model presented, I believe it provides encouragement that we could 

facilitate the design of guardrails for AI systems, through this style of analysis.  It should be worthy of 
future research. Clearly its accuracy and success are very much dependent on how realistically we can 
model the environment. In the case study illustrated this was the process representing how a patient’s 
blood sugar and insulin levels respond over time to the three stimuli of eating, exercising and receiving 
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insulin injections. These were massively simplified in this example and to create a more functional 
model would require substantial domain knowledge of Human Physiology and Biology, especially in 
the context of type 1 diabetes. 

 
Please note that the opinions expressed here are those of the author and do not necessarily represent 

those of Lloyds of London.  
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