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Abstract. Cross-sectional trading strategies involves constructing port-
folios by comparing expected performance of assets within a group, typ-
ically using predicted returns. In this study, we frame the estimation of
cross-sectional expected returns as a symbolic regression problem, and
investigate the predictive capabilities of geometric semantic genetic pro-
gramming in developing cross-sectional trading strategies in the U.S.
stock market. We employ standard genetic programming and other com-
mon methods used for studying cross-sectional returns as baselines for
comparison. Our findings indicate that geometric semantic genetic pro-
gramming provides better forecast accuracy, portfolio performance, and
ranking accuracy than standard genetic programming. Furthermore, we
show the limitations of errors-based metrics as performance measurement
in cross-sectional trading strategies.
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struction · Stock Returns Prediction · Stock Selection

1 Introduction
Cross-sectional trading (CST) strategies are a widely used investment approach
in asset management. The goal of CST strategies is to build a portfolio by buy-
ing assets expected to outperform and selling those expected to underperform
within an asset group at a specific point in time. Assets are compared using
various criteria, ranging from a single characteristic1 to output of models that
combine multiple characteristics. A common criterion for evaluating assets is
their predicted returns. Forming an effective portfolio in CST strategies requires
understanding why certain assets are expected to give higher or lower returns
than others, rather than focusing on how each asset returns will change over
time. The models are found by estimating the cross-sectional expected asset re-
turns, which can be formulated as a symbolic regression problem. The portfolio
formed by CST strategies profits from relative differences in asset returns with
minimal influenced by overall market movement [15]. Linear models estimated
via ordinary least squares (OLS) have long been the preferred choice in both
research and practice for cross-sectional returns forecasting due to its simplicity
1 In the context of computer science, a characteristic of an asset is analogous to a

predictor or feature, terms which will be used interchangeably.
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and effectiveness. In recent years, numerous machine learning (ML) applications
[13,16,17] have been proposed to improve predictions over OLS. The improved
predictive performance of these ML models is largely attributed to their abil-
ity to capture non-linear signals [6]. Geometric semantic genetic programming
(GSGP) is a variant of genetic programming (GP) that uses geometric semantic
operators (GSOs) to replace the standard genetic operators. GSOs apply pre-
cise syntax modification to individuals, resulting in predictable and well-known
geometric properties in their semantics. Moreover, the fitness landscape seen by
GSOs is unimodal error surface for any supervised ML problem. Given the pre-
vious success of ML models in improving prediction accuracy, GSGP presents
a promising, yet unexplored, approach for building CST strategies. In this pa-
per, we examine predictive power of GSGP for constructing CST strategies in
the U.S. stock market, exploring its potential to enhance forecasting accuracy
and portfolio performance. The main contributions of this study are threefold.
First, we introduce a novel application of GSGP. Second, we present a compar-
ative analysis of GSGP and the variant in which the optimal mutation step is
calculated for geometric semantic mutation operator (GSGPo) [14,29] against
standard GP and other common methods used for studying the cross-sectional
stock returns, including OLS, LASSO, gradient boosted regression trees (GBRT),
random forest (RF), and neural networks (NNs) [7,11,16]. Our results show that
both GSGP and GSGPo offer additional value gains over standard GP, provid-
ing better forecasting accuracy, portfolio performance and ranking performance.
Comparing to the remaining methods, GSGPo portfolio tends to show competi-
tive performance across overall metrics, ranking near the top-performing models,
although it may not always be the absolute best. Third, we empirically show the
limitations of error-based metrics when used for evaluating CST strategies or as
an optimisation objective. The rest of this paper is organised as follows: Section
2 introduces CST strategies. Section 3 outlines methodology. Section 4 describes
experimental setup. Section 5 presents results and discussion. Section 6 concludes
and suggests future work.

2 Cross-Sectional Trading Strategies

Cross-sectional trading (CST) strategies involve selecting assets by comparing
their relative performance at a specific point in time. In this paper, we consider
a set of stocks as the primary asset class for our CST strategy. Essentially,
CST strategies focus on buying stocks that are expected to outperform in a long
portfolio and selling those that are expected to underperform in a short portfolio.
Forming a portfolio in CST strategies typically involves four main steps [37]:
score calculation, score ranking, stock selection, and portfolio construction.

Score Calculation The score for each individual stock is computed based on
its corresponding characteristics. This process produces a vector of scores for all
stocks as the final output. For example, an individual stock score could be deter-
mined by a single characteristic such as its earnings-to-price ratio [3] or through
more sophisticated models that combine several characteristics [16,24,37].
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Score Ranking Score ranking involves sorting the score vector, where stocks
with the highest scores are considered the best. The sorting procedure produces
a predicted rank list.
Stock Selection The selection step involves retaining some groups of the stocks
based on their rank to form a long-short portfolio. Stocks expected to outper-
form are included in a long portfolio, those expected to underperform in a short
portfolio, while stocks ranked in the middle are excluded.
Portfolio Construction Finally, weights are assigned to the selected stocks
such that the total in both long and short portfolio sums to zero. Some common
weight allocation schemes include equal-weighting, where weights are distributed
equally to each stock, and characteristic-weighting, which allocates weights based
on stock-specific characteristics, such as market capitalisation [11,16] or in pro-
portion to the inverse of their historical volatility [37].

CST strategies contrast with time-series trading (TST) strategies, where
trading decisions for each asset are based on expected individual performance.
The key difference lies in the threshold for buying or selling assets: TST strate-
gies use a zero-return threshold, while CST strategies employ average return as
the benchmark. For example, consider a scenario with 100 stocks, each predicted
to yield a positive return. CST strategies would buy a group of stocks with the
highest expected return and sell those with the lowest, while TST strategies
would buy all 100 stocks.

3 Methodology
This section introduces a general framework for stock returns prediction. We
then describe our forecasting models and provide a brief explanation of their
implementation in each subsection.

3.1 General Framework
The score for each stock is calculated based on its predicted future returns
corresponding to its characteristics. Suppose S = {s1, . . . , sN} represents the
set of N stocks, where si denotes an individual stock. For simplicity, we assume
that the number of stocks remains constant over time t = 1, . . . , T . We consider
the relationship between stock returns and their characteristics as a general
additive prediction model, as in Gu et al. [16]:

ri,t+1 = Et(ri,t+1) + ϵi,t+1 (1)

where ri,t+1 is the return on stock si at time t+1. The cross-sectional expected
return Et(ri,t+1) is assumed to be represented by some true underlying function
g∗, which takes stock characteristics as an input:

Et(ri,t+1) = g∗(pi,t) (2)

where pi,t = (p
(1)
i,t , ..., p

(K)
i,t ) ∈ RK denotes a vector of K stock characteristics of

stock si at time t. The objective is to approximate a function g∗ by estimating a
function g that maps pi,t into a single real value, g : RK → R, a task that can be
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viewed as a symbolic regression problem. The form of an estimated function g is
left unspecified, allowing it to be either linear or non-linear, as well as parametric
g(pi,t; θ) or non-parametric g(pi,t). Although the algorithms used to approximate
g∗ vary, the output g(pi,t) generally aims to predict the true stock returns by
minimising the mean squared forecast errors (MSFE), defined as:

MSFE(g) =
1

N(T − 1)

T−1∑
t=1

N∑
i=1

(
ri,t+1 − g(pi,t)

)2

(3)

We use g(pi,t) instead of r̂i,t+1 to emphasise that scores do not necessarily need
to be predicted returns but rather the output of a function. By assuming g∗

to be time-invariant, the MSFE function utilises pooled data across the entire
panel (see Figure 1) to estimate the model once, ignoring the time dimension
rather than estimating it across each time as in the Fama-MacBeth framework
[17]. This approach reduces the computational time required by ML algorithms.

3.2 Forecast Models

Our selection of algorithms to be compared with GSGP are those commonly
used in the cross-sectional studies for estimating expected stock returns including
nature-inspired algorithms, penalised linear models, and tree-based approaches
[7,11,16,24].

Genetic Programming (GP) GP is an evolutionary computation method
based on the principle of Darwinian evolution. The population contains the can-
didate solutions of function g, represented in the form of tree structure. While
the advantage of using GP lies in its flexibility to choose fitness function(s)
specifically tailored to the nature of the problem [4,5,21,24], we use MSFE as
our fitness function to ensure direct comparability with other algorithms and
to serve as a baseline for GSGP. Our function set consists of both linear and
non-linear operators: {+,−, ∗, aq, sin, tanh}. The combination of linear function
and function such as sin or tanh in our function set enables GP to approximate
any arbitrary function similar to the universal approximation capability of neu-
ral network [33,40]. Analytic quotient (aq) [32] is used to remove discontinuities
that can often arise from using unprotected and protected division. Replacing
protected division with aq in the function set improves the generalisation ability
of the evolved model in symbolic regression, an issue that cannot be resolved
through model selection using a validation dataset [33]. Our terminal set con-
sists of stock characteristics and an ephemeral constant that return a value in
range [−1, 1]. While Liu et al. [24] consider the population size (npop) and the
maximum number of generations (ngen) to be the two most important hyperpa-
rameters for a similar problem, they found that ngen plays a more critical role.
In our preliminary runs, the training fitness did not vary significantly with differ-
ent values of npop and when ngen exceeded 40. Therefore, we consider ngen and
maximum tree depth (maxdepth) to be the two most important hyperparame-
ters, keeping npop fixed. When recombination operators result in an individual
that exceed the tree depth limit, we randomly return one of its parents. To
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further improve the model robustness, we adopt an ensemble approach in our
model training [22,24,41]. Specifically, we select the five best unique individuals
from the final population and form a prediction by taking the arithmetic mean
of each individual forecast.

Geometric Semantic Genetic Programming (GSGP) GSGP uses geo-
metric semantic operators (GSOs) to replace the standard syntax-based genetic
operators. Given N inputs corresponding to the characteristics of each stock, the
semantic of a function g is defined as s(g) =

(
g(p1), . . . , g(pN )

)
. This vector can

be represented as a point in N -dimensional space, called semantic space. Note
that the target vector r⃗ =

(
r1, . . . , rN

)
is also a point in the semantic space.

The offspring’s semantic produced by GSOs is predictable with well-known ge-
ometric properties. Moreover, the fitness landscape seen by GSOs is unimodal
for any supervised ML problem. The distance between the target semantic and
individual semantic can be used as the fitness function in GSGP, which is MSFE
for our problem. Geometric semantic crossover (GSCX) and geometric semantic
mutation (GSM) are originally defined in Moraglio et al. [31] as:

Definition 1. Geometric Semantic Crossover (GSCX) Given two parent
functions g1, g2 : RK → R, GSCX(g1, g2) = gr · g1 + (1− gr) · g2, where gr is a
random function whose codomain(gr) ∈ [0, 1]

Definition 2. Geometric Semantic Mutation (GSM) Given a parent func-
tion g : RK → R, GSM(g) = g +ms · (gr1 − gr2), where ms is a mutation step
and gr1 , gr2 are random functions

GSCX has a nice property that the fitness of an offspring is guaranteed not to
be worse than the worst of its parents. However, the offspring semantic can reach
the target only if the target semantic lie within the convex hull of its parents [35].
Moreover, applying GSCX increases the node size exponentially, making the op-
erator inapplicable in some cases [39]. While applying simplification helps reduce
node size, the evolved function often remains large and computationally intensive
[27]. In contrast, GSM increases node size linearly and using only GSM can yield
comparable or better results than using both GSOs in the evolutionary process
[31,39]. Although the semantic of random functions generated by the original
GSM operator are unbounded, later studies showed that limiting the codomain
of random functions to a pre-defined interval using a sigmoid function improves
generalisation [14,39]. However, Nicolau and McDermott [34] found that offspring
semantic from unbounded GSM have long-tailed distributions in each dimension
due to the lack of a bounded radius, with variance differing according to the
distribution of training cases. Thus, applying a sigmoid function blindly may
result in poor semantic and unnecessary complexity. For these reasons, we adopt
a semantic stochastic hill climber (GSGP with population of size 1) that relies
solely on GSM in our evolutionary process. We use a variant of GSM defined in
[1] as GSM(g) = g + ms · N (gr), where N (gr) = 2 ∗ gr−min(s(gr))

max(s(gr))−min(s(gr))
− 1.

This variant stabilises the output distribution of random function without re-
quiring a sigmoid function and reduces node size by generating a single random
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function. A random function is generated using either grow or full method, ran-
domly chosen with equal probability, with the same primitive set used in GP. To
ensure the offspring is at least as good as its parent, if the normalised random
function N (gr) worsen the offspring, then −N (gr) is considered. The new solu-
tion is accepted only if it improves upon its parent. Additionally, we consider
GSGP with an optimal mutation step (GSGPo) [14,29], which uses the GSM
operator that selects the mutation step to minimise MSFE of the mutated func-
tion. We select the best individual (i.e., the one with the lowest training error)
from 10 independent evolutionary processes to account for potential poor choice
of initial individual [29] and variations in convergence speed. Our GSGP imple-
mentation also incorporates higher-order functions and memoization techniques
for improved efficiency [30]. A pseudocode for our GSGP evolutionary process is
provided in Algorithm 1.

Algorithm 1 Pseudocode for GSGP Evolutionary Process (GSGP)
1: function GSGP(F,P, r⃗) ▷ F : Fitness function
2: ngen← 0 ▷ P: Set of stock characteristics
3: Initialise random function g0 ▷ r⃗: A vector of stock returns (target)
4: while termination criteria not satisfied do
5: ngen← ngen + 1

6: Generate random function gr ▷ N (gr) = 2 ∗ gr−min(s(gr))
max(s(gr))−min(s(gr))

− 1

7: Normalise gr to obtain N (gr)
8: Calculate ms (pre-determined or based on N (gr))
9: gtemp ← gngen−1 + ms · N (gr)
10: if F(gtemp;P, r⃗) is better than F(gngen−1;P, r⃗) then
11: gngen ← gtemp

12: else
13: gtemp ← gngen−1 −ms · N (gr)
14: if F(gtemp;P, r⃗) is better than F(gngen−1;P, r⃗) then
15: gngen ← gtemp

16: else
17: gngen ← gngen−1

18: return gngen

Ordinary Least Squares (OLS) OLS is the least complex method in our
analysis. It serves as a baseline to assess the additional value gained from using
more sophisticated algorithms. Despite its simplicity, OLS is widely used in
studies of cross-sectional stock returns [2,3,9,20,23,25].
LASSO LASSO adds an l1-penalty term to the optimisation problem, encour-
aging parsimonious models by shrinking some coefficients to zero. This helps
mitigate overfitting caused by multicollinearity among predictors, as OLS may
potentially captures noise instead signal. We use LASSO since it is analogous to
the support vector machine algorithm [19].
Gradient Boosted Regression Trees (GBRT) & Random Forest (RF)
Both GBRT and RF are built on regression tree (RT) using the CART algorithm
as it is one of the most widely used algorithm among the existing options [26].
Ensemble methods like GBRT and RF aim to tackle overfitting by combining
predictions from multiple simple trees into one consensus forecast, rather than
building a single complex tree. GBRT is constructed via stagewise additive ex-
pansions. The process starts by fitting a simple RT. Next, a second RT is added
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by fitting prediction errors of the previous RT. The forecast of the second tree
is shrunken by some small positive value, called learning rate, to help prevent
the model from overfitting the residuals. The process is repeated for a prede-
termined number of iterations. The final output is an additive model of simple
RTs. RF is built based on the idea of bootstrap aggregation or bagging. Bagging
involves randomly selecting samples from the training data with replacement.
These bootstrapped samples are then used to construct simple RTs. This pro-
cess is repeated multiple times. RF extend bagged trees by randomly selecting
a subset of features at each split, which helps reducing the correlation among
trees across different bootstrap samples.

Neural Networks (NNs) We consider the feedforward neural networks archi-
tecture, where each node is connected to all nodes in the previous layer and the
connections follow a one-way direction, from the input to output layer. Each node
in the input layer represents a predictor and the output layer contains a single
node producing the score output. We use Rectified Linear Units (ReLU) as our
activation function for its computational efficiency and universal approximation
capability. We avoid overfitting by adopting multiple regularisation strategy.
First, we use stochastic gradient descent to train our NNs. Second, we apply
learning rate shrinkage, where the learning rate is divided by 5 each time MSFE
failed to decrease training loss or failed to improve the validation samples, re-
tained from the training samples by some pre-determined threshold. Third, we
train NNs with multiple random seeds to form an ensemble to improve gener-
alisation ability [18]. Specifically, we train NNs with five independent random
seeds. The predictions are then averaged as the final output. Lastly, we use l2-
penalty term to the weight parameters, shrinking the weights toward zero. We
consider NNs with up to three hidden layers, denoted as NN1, NN2, and NN3,
selected according to the pyramid rule [28], as using more hidden layers could
potentially lead to performance deterioration [16].

The implementation of our models utilises well-established frameworks. We
employ Scikit-learn [36] for OLS, LASSO, GBRT, RF, and NNs. For GP, GSGP,
and GSGPo, the implementations are based on DEAP framework [12]. The hy-
perparameters are selected from a comprehensive set of parameter specifications
(see Table A1), following commonly used choices in the literature [7,11,16,24].

4 Experimental Setup

We begin with a description of the dataset and preprocessing steps. Next, we
explain the sample splitting and hyperparameter tuning process. Lastly, we detail
the performance evaluation methods used to assess each algorithm.

4.1 Data
The data are sourced from FactSet financial data and analytics, obtained with a
permission of Jupiter Asset Management Systematic Equities team. We consider
the latest available values of the data at the end of each month, represented as
a panel, shown in Figure 1. Our stock universe consists of all U.S. firms listed
in MSCI North America. The sample spans from January 1990 to December
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Month Predictor 1 . . . Predictor K Return

1

p
(1)
1,1 . . . p

(K)
1,1 r1,2

...
...

...
...

p
(1)
N,1 . . . p

(K)
N,1 rN,2

...
...

...
...

...

T-1

p
(1)
1,T−1 . . . p

(K)
1,T−1 r1,T

...
...

...
...

p
(1)
N,T−1 . . . p

(K)
N,T−1 rN,T

Fig. 1: An example of dataset presented in a panel format

2022, encompassing approximately 3000 stocks in total, with an average of 650
stocks per month. We consider 12 stock characteristics, as described in Figure
2. Since each stock characteristic differs in their range of values and unit, it is
not straightforward to intuitively compare them. Therefore, we employ a typical
transformation to each stock characteristic by converting them into ranks and
map into an interval [−1, 1] across each time [7,11,16]. Specifically, we rank
each characteristic in ascending order then divided by the number of stocks
at each month. The transformed values in the range [0, 1] are multiplied by 2
then subtracted by −1. We use stock returns instead of their excess returns of
treasury-bill rate on our analysis to represent the actual performance without
any adjustments. The returns are winsorized each month at 1% and 99% during
model training to handle outliers, while retaining their original value during
portfolio formation. We only include stock observations with complete data on
returns and all stock characteristics, i.e., observations with no missing values.

# Predictor Definition

1 Short-term reversal [25] Returns of the prior month
2 Momentum [20] Returns from 12 months prior to 2 months prior
3 Long-term reversal [9] Returns from 36 months prior to 13 months prior
4 Size [2] Market value of an equity at the end of prior month
5 Earnings-to-price [3] Net income in the prior fiscal year divided by market

capitalisation at the end of the prior month
6 Asset turnover Net sales and revenues in the prior year divided by mar-

ket capitalisation at the end of prior month
7 Beta Market beta estimated from daily returns against MSCI

North America from the prior 12 months
8 Book-to-price Book value of equity divided by market value of equity
9 Debt-to-assets Short term plus long term debts to total assets
10 Volatility Daily returns standard deviation from the prior 252

days
11 Dividend yield Dividends per share over the prior 12 months divided

by price at the end of the prior month
12 Return on assets Income before extraordinary items divided by average

total assets in the prior year

Fig. 2: Description of all stock characteristics
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4.2 Sample Splitting & Hyperparameter Tuning via Validation
The data are divided into three disjoint parts: training, validation, and out-
of-sample, while keeping the temporal order of the dataset, following common
practices [7,11,16]. The training data are used to estimate the model for each
combination in the hyperparameter set. The validation data are used for hy-
perparameter tuning. The out-of-sample data, which have neither been used for
training nor hyperparameter tuning, are used to evaluate the method’s predic-
tive performance. Specifically, forecasts are generated based on the model trained
with training samples. MSFE is then calculated using the validation samples for
each combination of hyperparameters. This hyperparameter tuning step, which
preserves the temporal ordering of the data, has been shown to be preferable
to the standard cross-validation scheme for data with a time dimension [8,38].
The model with the hyperparameter combination that best minimises MSFE
is selected to forecast during out-of-sample periods. The data from the first 12
months are initially used as a training sample and the subsequent 12 months
as validation sample, making the out-of-sample period span from January 1992
to December 2022, for a total of 372 months. The models are retrained on an
annual basis. The chosen hyperparameter combination of the trained model is
fixed, making out-of-sample predictions over the next 12 months. The training
sample increases by 12 months while retaining the entire history. The valida-
tion sample remains a fixed size and is rolled forward by 12 months. Figure 3
illustrates the sample splitting and model retraining process.

Training Validation Out-of-Sample

1 1990-01 — 1990-12 1991-01 — 1991-12 1992-01 — 1992-12

2 1990-01 — 1991-12 1992-01 — 1992-12 1993-01 — 1993-12

3 1990-01 — 1992-12 1993-01 — 1993-12 1994-01 — 1994-12

...
...

31 1990-01 — 2020-12 2021-01 — 2021-12 2022-01 — 2022-12

Fig. 3: Sample Splitting and Model Retraining

4.3 Performance Evaluation
The performance of each method is evaluated using various type of metrics,
including prediction accuracy, portfolio performance, and ranking accuracy. All
calculations are made during out-of-sample period.

We assess the statistical significance of the differences in forecast errors
among models using a modified Diebold-Mariano test [10], as defined in Gu et
al. [16]. The Diebold-Mariano test is adapted by comparing average prediction
errors over time rather than comparing the errors of each individual forecast.
Specifically, to test for the forecast performance of method (1) against method
(2), the test statistic DM12 is defined as:

DM12 =
d̄12
σ̂d̄12

(4)
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where,

d12,t =
1

N

N∑
i=1

((
ri,t − g1(pi,t)

)2 − (
ri,t − g2(pi,t)

)2) (5)

g1(pi,t) and g2(pi,t) denote the output score for stock si at time t using each
method. d̄12 and σ̂d̄12

denote the mean and Newey-West standard error of d12,t
over the out-of-sample period. We compare the predictive performance against
a naive prediction using R2

oos, defined in Gu et al. [16] as:

R2
oos = 1−

∑
(i,t)∈Toos(ri,t − g(pi,t))

2∑
(i,t)∈Toos r

2
i,t

(6)

Toos indicates that the predictions are only evaluated during the out-of-sample
period. R2

oos pools prediction errors across stocks and over time into one panel-
level assessment of each model.

We form a long-short portfolio at each point in time during the out-of-sample
period, following the procedures described in Section 2. Specifically, we divide
stocks into ten groups according to their predicted return (i.e., their score).
Next, we buy stocks in the top decile to include them in a long portfolio and sell
those in the bottom decile in a short portfolio. The selected stocks are weighted
equally, ensuring that the total weight sums to 1 in a long portfolio and −1 in a
short portfolio. We report the long-short portfolio monthly return mean and its
standard deviation, annualised Sharpe ratio, final cumulative returns, maximum
drawdown, and turnover. The portfolio turnover is defined following Gu et al.
[16] as:

Turnover =
1

|Toos|
∑

t∈Toos

(∑
i∈S

∣∣∣∣wi,t −
wi,t−1(1 + ri,t)

1 +
∑

j wj,t−1rj,t

∣∣∣∣) (7)

We also assess the correctness of the predicted rank list by computing the average
of Spearman’s rank correlation coefficient across each time, denoted as ρoos.

5 Results and Discussion
We report the run closest to the median Sharpe ratio out of 30 simulation runs, as
it aligns towards the investment objective and likely presents how each method
will perform in practice. All calculations are made based on out-of-sample period.

5.1 Results
Table 1 reports pairwise comparison of the test statistics of modified Diebold-
Mariano test. Negative value indicates that the row method outperform the
column method by having lower average forecast errors and vice versa. Bold
font indicates that the difference is significant at 5% level. Asterisk sign indi-
cates that the difference is significant after conservative Bonferroni adjustment.
The forecast errors of GSGP and GSGPo are significantly less than those of
standard GP, with GSGP considered best. However, after applying the conser-
vative Bonferroni adjustment, there is no significant difference between GSGP
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Table 1: This table reports pairwise modified Diebold-Mariano test statistics com-
paring the average forecast errors during the out-of-sample period. Negative value
indicates that the row method outperforms the column method, i.e., it has lower
average forecast errors and vice versa. Bold font indicates that the difference is
significant at the 5% level. Asterisk sign indicates that the difference is significant
after Bonferroni adjustment.

OLS LASSO GBRT RF NN1 NN2 NN3 GP GSGP GSGPo

OLS – 5.81* 0.78 3.79* 2.38 0.60 1.06 -10.15* -4.11* -5.92*
LASSO – -0.98 1.04 -5.28* -3.07 -3.06 -13.23* -7.42* -9.07*
GBRT – 2.06 -1.78 -0.51 -0.32 -7.94* -2.51 -3.71*
RF – -4.98* -3.24* -3.28* -11.81* -5.84* -7.37*
NN1 – 2.91 2.92 -8.26* -1.59 -3.47*
NN2 – 0.45 -10.17* -3.86* -5.52*
NN3 – -11.41* -4.29* -6.07*
GP – 8.28* 6.91*
GSGP – -2.32
GSGPo –

and GSGPo. Nonetheless, their forecast errors remain relatively high compared
to the remaining methods.

Figure 4 shows the cumulative returns of the decile long-short portfolio as
selected by the models during out-of-sample period. The portfolio performance
and R2

oos for each method are summarised in Table 2. The numbers are presented
without transaction cost, highlighting the raw predictive ability. The results show
that both GSGP and GSGPo achieve higher R2

oos than GP, with GSGP slightly
higher than GSGPo. Nonetheless, their R2

oos are still relatively lower than the
rest of the methods. GSGPo achieves the best portfolio performance among
the GP-based approaches. Although GP portfolio has lower volatility, its risk-
adjusted return, Sharpe ratio, is significantly lower at 0.06, which is more than
four times lower. The final cumulative return of GP portfolio is the only one that
is less than 1, indicating losses at the end of the period. GSGPo ranked behind
OLS, NN1, and NN2 in terms of return mean, Sharpe ratio, and final cumulative
return but had a lower maximum drawdown compared to those methods, except
for NN1.

Figure 5 illustrates stock characteristics importance across each method. We
calculate the importance of each stock characteristic following the approach in
[7,16]. Specifically, the importance of a stock characteristic p

(k)
i,t is measured by

the reduction in R2
oos when it is set to 0 for all predictions at each time period,

while other characteristics remain unchanged. The value for each characteris-
tic are normalised to sum to 1 for relative interpretation. The colour gradient
within each column indicates the importance of the characteristics for a partic-
ular method, with darker colours representing greater importance. The figure
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Fig. 4: This figure shows the cumulative returns of decile long-short portfolio,
as selected by the models, during out-of-sample period of a run closest to the
median Sharpe ratio out of 30 simulation runs for each method

Table 2: This table compares the performance of decile long-short portfolio dur-
ing out-of-sample periods across methods. The numbers are presented for equal-
weighting scheme with monthly rebalance excluding transaction cost, highlighting
the raw predictive ability of the models.

OLS LASSO GBRT RF NN1 NN2 NN3 GP GSGP GSGPo

Return Mean (%) 0.55 0.43 0.33 0.41 0.56 0.50 0.46 0.06 0.39 0.49

Return Std (%) 6.86 7.11 6.39 6.88 6.20 6.29 6.15 3.47 6.37 6.26

Sharpe Ratio 0.28 0.21 0.18 0.21 0.31 0.28 0.26 0.06 0.21 0.27

Final CumRet 3.24 1.97 1.62 1.98 3.95 3.14 2.79 0.97 2.06 3.08

MaxDD (%) 59.83 66.10 72.13 68.12 49.75 62.15 63.42 47.68 64.17 56.37

Turnover (%) 103.12 82.84 96.55 89.44 103.81 105.69 109.76 82.24 101.09 98.25

R2
oos (%) 0.71 0.75 0.73 0.77 0.68 0.71 0.72 0.44 0.65 0.61

ρoos (%) 0.59 0.41 0.30 0.01 0.69 0.30 0.27 0.02 0.19 0.57
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suggests that linear models like OLS and LASSO consider Beta to be the most
important characteristic, while GBRT, NN1, and GSGPo prioritise Volatility ;
other methods prioritise different characteristics.

Fig. 5: This figure shows stock characteristics importance across methods. The
importance of a characteristic is calculated as the reduction in R2

oos when its
values are set to 0, while other characteristics remain fixed. The values are nor-
malised to sum to 1 for relative interpretation. The colour gradient within each
column indicates the importance of the characteristics of a particular method,
with darker colours representing greater importance.

5.2 Discussion
Our results show that both GSGP and GSGPo offer advantages over standard
GP in terms of forecasting accuracy, with improvements in both forecast errors
(see Table 1) and R2

oos (see Table 2), contrary to previous findings suggesting
GSGP limited benefits in financial applications [29]. These improvements likely
result from periodic model retraining and hyperparameter updates with new data
applied here, a strategy not fully explored in prior studies. Additionally, GSGP
and GSGPo achieve better portfolio performance and higher ρoos than standard
GP, with GSGPo generally outperforming GSGP. The differences between their
portfolios performance are likely due to the distinct signals each method capture
(see Figure 5). When compared to the remaining methods, the forecast errors
of GSGP and GSGPo remains relatively high (see Table 1) and their values of
R2

oos are somewhat lower (see Table 2). Nonetheless, GSGPo portfolio tends to
show competitive performance across non-error-based metrics, ranking near the
top-performing models in each aspect, though it might not always come out on
top.

Interestingly, OLS portfolio performs well and is difficult to beat, ranking
third in Sharpe ratio, with final cumulative return and ρoos just behind NN1.
This could be partly explained by the smaller predictor set used in this study, as
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previous studies has shown that the additional values provided by ML algorithms
often comes from larger predictor sets, e.g., 920 predictors in Gu et al. [16] and
over 100 predictors in Cakici et al. [7]. However, only 12 predictors, which likely
contain fewer non-linear signals, are considered here. Nonetheless, this explana-
tion does not account for all observed outcomes, particularly the inconsistencies
in portfolio performance and forecasting errors across many method pairs e.g.,
GSGPo against the remaining methods, except GP and LASSO against NNs.

A more plausible explanation for these discrepancies lies in the limitation of
MSFE as an optimisation objective. Although perfectly minimised MSFE would
ideally capture the correct relative order among stock returns, even low but non-
zero MSFE values can still lead to large ranking errors. Because CST strategies
prioritise the relative performance of assets over absolute accuracy, MSFE fails
to account for important aspect like the order of asset returns. As a result, the
portfolio performances likely depends more on the signals each method capture
rather than their forecast errors. Ranking metrics such as ρoos better capture
the effectiveness of CST strategies compared to traditional error-based metrics
like the modified Diebold-Mariano test and R2

oos. These findings suggest that
the current definition of semantics in semantics GP framework overlooks cases
where the relative order of outputs is more critical than their precise values.

6 Conclusion and Future Work
We introduce an application of GSGP in developing CST strategies in the U.S.
stock market. The predictive power of GSGP and its variant in which the op-
timal mutation step is used in GSM operator (GSGPo) are compared against
standard GP and other common methods used for studying cross-sectional stock
returns including OLS, LASSO, GBRT, RF, and NNs. The results show that
both GSGP and GSGPo offer additional value gains over standard GP, provid-
ing better forecasting errors, R2

oos, ρoos, and portfolio performance. Part of the
success is attributed to periodic model retraining and hyperparameter updates
with new data, previously overlooked. GSGP and GSGPo forecast errors remain
high compared to the remaining methods. However, the portfolio performance of
GSGPo often ranked among the top across metrics, though it may not always be
the winner. The findings further suggest that MSFE, commonly used in GSGP
and other regression models, may be suboptimal as an optimisation objective
for building CST strategies as it overlooks the relative order of asset returns.
In future work, we aim to explore the incorporation of semantics that consider
order structure among outputs within GSGP framework, potentially leading to
more accurate portfolio formation and improved performance in CST strategies.
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A Hyperparameter Tuning

Table A1: This table describes hyperparameter combinations for tuning with validation samples, with all possible combination are formed from a Cartesian
product. For example, for an algorithm with hyperparameters A = {a1, a2} and B = {b1, b2}, the pairs (a1, b1), (a1, b2), (a2, b1), (a2, b2) are considered.

Hyperparameter Specification Definition

OLS none
LASSO alpha {10−5, 10−4, 10−3} Constant that multiplies the l1 penalty term

tol {10−5, 10−4, 10−3} If the updates are smaller than tol, checks the dual gap for optimality and continues until it is smaller than tol
GBRT n_estimators {50, 100} Number of boosting stages to perform

learning_rate {10−2, 10−1} The contribution of each tree
maxdepth {1, 2, 3, 4, 5} Maximum depth of each individual tree

RF n_estimators {50, 100, 200} Number of trees in the forest
maxdepth {1, 2, 3, 4, 5} Maximum depth of each individual tree
max_samples 0.75 Proportion of samples to draw to train each base estimator
max_features sqrt Number of features to consider when looking for the best split

NN1-NN3
asolver sgd Solver for weight optimisation
learning_rate_init {10−2, 10−1} Initial learning rate
batch_size 500 Batch size
validation_fraction 0.2 Proportion of training data to set aside as validation set for early stopping
tol {10−6, 10−5, 10−4} When the loss or validation score is not improving by at least tol, the current learning rate is divided by 5
alpha {10−5, 10−4, 10−3} Strength of l2 regularisation term
max_iter 400 Number of epochs
ensemble 5 Number of independent random seeds used for model training

GP npop 200 Number of population
ngen {10, 20, 40} Number of maximum generation
maxdepth {10, 20, 30} Maximum depth of an individual after applying genetic operators

GSGP npop 1 Number of population
ngen {20, 50, 100} Number of maximum generation
max_gen_depth {3, 5, 7} Maximum depth for each tree generation
ms {10−3, 10−2, 10−1} Mutation step
nrun 10 Number of independent runs

GSGPo npop 1 Number of population
ngen {20, 50, 100} Number of maximum generation
max_gen_depth {3, 5, 7} Maximum depth for each tree generation
ms optimal Mutation step
nrun 10 Number of independent runs

a The hidden layers for neural network with 1, 2 and 3 hidden layers are (32), (32, 16), and (32, 16, 8) respectively
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