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ABSTRACT
Human beings aspire for a better life. Financial well-being enables
this. However, lack of financial literacy, ever-growing wealth in-
equality, and persuading illicit information floating in social media
inhibit one’s progress towards a good fortune. In this paper, we
discuss four pillars where Natural Language Processing can help
improve financial literacy, reduce wealth disparity, ensure a sustain-
able future, and economic prosperity. These pillars are: Inclusive
investing, Improved investing, Impactful (green) investing, and In-
formed investing. Additionally, we focus to specifically cater to the
Indian market (Indic investing) and present several resources to
enhance comprehensibility of financial texts. Inclusive investing
deals with enhancing the readability and reachability of financial
texts. Improved investing addresses the need to simplify investors’
journey by providing them with hypernyms and relations between
entities. Impactful investing is associated with focusing on sustain-
able pathways. Improved investing is about eradicating finance
related misinformation from social media, like evaluating trustwor-
thiness of posts by executives, detecting in-claim and exaggerated
numerals, etc. In most cases, we are able to demonstrate the ef-
ficacies of our approaches by benchmarking them with existing
state-of-the-art methods.

CCS CONCEPTS
• Applied computing→ Economics; • Information systems
→ Clustering and classification; Social networks; Information
retrieval; • Computing methodologies→ Information extrac-
tion; Language resources; Lexical semantics; Information extraction;
Ensemble methods.

KEYWORDS
Financial Natural Language Processing, Financial Texts, Text com-
prehension, Green Investing, Inclusive Investing, Indic Texts

1 INTRODUCTION

In today’s world, to address the ever-growing rich-poor divide, it
is essential to focus on financial literacy. Financial literacy is the art
of managing money. The financial literacy rate for developed na-
tions (like the United States, the United Kingdom) stands between
51 to 60%1 whereas for the developing nations (like India) it is less
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for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management (CIKM ’24), https://doi.org/10.1145/3627673.3680258
1https://blogs.illinois.edu/view/7550/558591870

than 30%.2 Financial literacy leads to financial well-being, which
in turns results in economic prosperity of the nation. To address
this, we have been working to improve the investment process and
make it more inclusive. We refer to this as Inclusive and Improved
investing. Currently, we have worked on enhancing the readabil-
ity and reachability of financial texts [26], [27]. Furthermore, we
worked to improve the investment journey by detecting hypernyms
and relations between entities [11], [14], [28].

Various nations across the globe have pledged to be carbon-
neutral by 2050.3 Thus, investors are looking for sustainable av-
enues for investing their money. They are keen to understand the
Environmental, Social, and Corporate Governance (ESG) aspects of
funds. To address this, we use natural language processing (NLP) to
analyse financial texts related to ESG and sustainability [21], [39],
[40]. We refer to this as Impactful Investing.

Persuading posts by financial influencers4, disrupts the stock
market adversely. Executives also try to reap benefits leveraging
the social media platforms. Thus, we work on identifying potential
miss-information and prevent its spread [17], [16], [20], [18], [38],
[19], [4]. This is called Informed Investing.

For a nation like India, where the top 10% of citizens controls
65% of the total wealth of the nation,5 it is of utmost importance to
address the needs of the bottom of the economic human pyramid.
While most previous research focusses on analysing financial texts
in English, we have been working to improve the comprehensibility
of financial texts in various Indian languages [37]. Moreover, we
have also worked on ESG and numeracy related tasks in Hindi,
Bengali, and Telugu. We refer to this as Indic Investing.

Additionally, we open-source several tools6 7 to analyse financial
texts in different languages [23].

2 PROBLEMS
In this section, we present the tasks we have been focussing along
with the corresponding publications.

2.1 Inclusive Investing
Task-1: Given a financial text (FT), we want to assess its readability
and simplify it. ([27])

2https://yourstory.com/2023/07/financial-literacy-is-key-to-unlocking-india-
economy (all URLS are accessed on 18th Jan 2024)
3https://www.un.org/en/climatechange/net-zero-coalition
4https://economictimes.indiatimes.com/markets/stocks/news/finfluencer-mess-
assessing-the-need-for-sebi-intervention/articleshow/105551155.cms
5https://www.livemint.com/economy/india-among-top-countries-with-high-
income-wealth-inequality-undp-report-11699284168538.html
6https://huggingface.co/spaces/sohomghosh/FENCE_Financial_Exaggerated_
Numeral_ClassifiEr
7https://huggingface.co/spaces/sohomghosh/FiNCAT_Financial_Numeral_Claim_
Analysis_Tool
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Task-2: Given two FTs, we want to assess which one would to
reach more people. ([13])

2.2 Improved Investing
Task-3: Given a financial jargon in a FT, we would like to retrieve
its hypernym. ([11], [14])
Task-4: Given two entities in a FT, we would like to determine the
relationship between them. ([28])

2.3 Impactful Investing
Task-5: Classify a FT as Sustainable or Unsustainable ([21])
Task-6: Detect ESG Issues from FTs in English. ([39])
Task-7: Identify ESG impact type & duration from FTs. ([40], [3])

2.4 Informed Investing
Task-8: Detect exaggerated and in-claim numerals from FTs. ([16],
[20], [22])
Task-9: Evaluate the Rationals of Amateur Investors. [19]
Task-10: Evaluate the trustworthiness of Social Media Posts by
Executives on Stock Prices ([38])
Task-11: Fine-grained Argument Understanding in FTs ([4])

2.5 Indic Investing
Task-12: Financial Argument Analysis in Bengali ([37])
Task-13: Extract ESG Issues, Assess Sustainability, and Detect ex-
aggerated numerals from FTs in Hindi, Bengali, & Telugu ([15])

2.6 Tools for FinNLP
Task-14: Develop tools for processing FTs ([23], [18], [17], [26])

3 METHODOLOGY AND RESULTS
Firstly, we explored the existing works [24], participated in various
FiNLP shared tasks and presented our preliminary findings [25].

For Task-1, we proposed a new dataset Financial Readability
Assessment Dataset (FinRAD) comprising 13,000+ definitions of
financial terms for measuring readability. Subsequently, we released
a fine-tuned version of FinBERT [2] and a tool, FinRead [26]. We
added a paraphraser on top of it and created the Financial Language
Simplifier (FinLanSer) tool.8 For Task-2, we collected a set of tweet
pairs that were related to finance, and each tweet in a pair was
similar to the other. We leveraged the reasoning power of Large
Language Models (LLMs) with the discriminative power of pre-
trained encoder models (RoBERTa [32]) to determine which of the
tweets in a give pair will receive more re-tweets.

Task-3 deals with hypernym detection. It is the third shared
task on learning semantic similarities for the financial domain [30].
We ranked third in this shared task [11]. Subsequently, we refined
our approach by ensembling results from two sentence transformer
[35] models to achieve state-of-the-art (SOTA) results [14]. For
Task 4, we used the REFinD dataset [31]. It deals with extracting
relationship between financial entities. We proposed the Mask One
At a Time (MOAT) framework and benchmarked its performance
with that of LLMs [28] (Falcon, Dolly, MPT and llama-2).

8https://youtu.be/YcHJliaSyuY (accessed on 24th Jan 2024)

We participated in several shared tasks related to ESG and sus-
tainability. The datasets of Tasks 5,6, and 7 are obtained by partic-
ipating in shared tasks [29], [8], [9] & [10]respectively. For Task-5,
6, we fine-tuned a RoBERTa [32] model and a SEC-BERT [33] model
respectively for classification [21], [39]. For Task-7, we extracted
ESG impact types & predicted duration of impacts from FTs in Eng-
lish, French, Japanese, Chinese, & Korean. We outperformed others
for Japanese, Chinese [40] & French datasets [3]. We enriched the
datasets through translation & paraphrasing.

For detecting in-claim numerals Task-8, we ensemble outputs
from models [16] created by fine-tuning FinBERT [2] and BERT
[12]. This dataset and task was first proposed by [5]. To determine
exaggerated numerals, we propose the Financial Exaggerated Nu-
meral ClassifiEr (FENCE) [22] tool. Task-9 is about estimating
if one financial opinion will lead to more profit or loss than the
other [6]. We ensemble two systems [19] created using FinBERT
[2] and SBERT Chinese.For Task-10, we used a Gated Recurrent
Unit model to investigate whether tweets by executives have more
influence than that of the public on the closing price of various
stocks [38]. Task-11 is one of the shared tasks of NTCIR-17 [7].
We fine-tuned FinBERT [2] and SEC-BERT [33] using the cross
encoder architecture [35] to determine the relationship between
argumentative FTs in English and Chinese, respectively.

To specifically focus on Indian languages, we started by analysing
argumentative texts in Bengali (Task-12) [37]. The first task was
to classify a FT in Bengali as ‘Premise’ or ‘Claim’. The second task
was to classify the relationship between two FTs in Bengali as ‘Sup-
port’, ‘Attack’, or ‘No Relation’. For both tasks, the fine-tuning of
multilingual BERT (MBERT) [36] gave us the best performance.
Furthermore, we analyse the financial budget speeches of differ-
ent states of India (Task-13). As of now, we proposed three tasks:
exaggerated numeral, ESG issue, and sustainability detection in
Hindi, Bengali, and Telugu. We fine-tuned MBERT and leveraged
the AIforBharat machine translation system [34].

To summarise, we have worked on financial texts in seven differ-
ent languages (English, French, Japanese, Chinese, Hindi, Bengali,
and Telugu) and proposed seven new FinNLP datasets. Of these,
three datasets have been published ([27], [38], [37]) and four of
them are under review. Finally, to improve the usability of the pro-
posed solutions, we created several tools to analyse financial texts
(Task-14) using gradio [1]. These include: Financial Language Un-
derstandability Enhancement Toolkit (FLUEnT) [23], FinRead [26] ,
Financial Numeral Claim Analysis Tool (FinCAT) [18], FinCAT-2
[17], and Financial Argument Analysis in Bengali (FAAB) [37]. In
Table 1, we present all our contributions. Furthermore, for each
task, we mention the metric for evaluation, briefly describe our
approach, benchmark our approach with that of SOTA, and present
the performance numbers. Additionally, we state if the dataset be-
ing used for a task is new and the language of this dataset. Lastly,
we mention whether we have created any new tool for the given
task and showcase our publications.

4 CONCLUSION AND FUTUREWORK
In this paper, we presented our contributions in the field of FinNLP
till date.We developed several models, created and released different
datasets and open-sourced several tools for mining financial texts.

https://youtu.be/YcHJliaSyuY
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Table 1: Approaches and results for different tasks.
AU-ROC = Area under the ROC curve, Acc. = Accuracy, MPP = Maximum Possible Profit, ML = Maximum Loss, MAPE = Mean
Absolute Percentage Error, NA = Not Applicable, SOTA = State of the Art, LLM = Large Language Model, PLM = Pre-trained
Language Model, Trans-Prp = Translate Paraphrase, IT = Impact Type, ID = Impact Duration

Task # Metric Approach Summary SOTA Performance New Data Language New Tool Publication(s)
1 AU-ROC FinBERT finetune Yes 0.993 Yes English Yes [26], [26]
2 F1 RoBERTa + Claude (LLM) Yes 0.731 Yes English No [13]
3 Acc. SBERT finetune Yes 0.967 No English No [14], [11]
4 F1 SEC-BERT + Neural Network No 0.736 No English No [28]
5 Acc. RoBERTa finetune No 0.932 No English No [21]
6 F1 SEC-BERT finetune No 0.715 No English Yes [39]
7 F1 FinBERT finetune No 0.929 (IT) No English No [40]
7 F1 Trans-Prp + FinBERT finetune No 0.756 (IT) No French No [40]
7 F1 Trans-Prp + FinBERT finetune Yes 0.679 (IT) No Japanese No [40]
7 F1 Trans-Prp + FinBERT finetune Yes 0.677 (IT) No Chinese No [40]
7 F1 Trans-Prp + PLM finetune No 0.5882 (ID) No English No [3]
7 F1 Trans-Prp + PLM finetune Yes 0.5616 (ID) No French No [3]

8 F1 Ensemble (FinBERT, BERT
+ Logistic Regression) No 0.948 No English Yes [16], [20], [18], [17]

9 MPP, ML SBERT Chinese + Classifier,
FinBERT No 0.575 (MPP),

0.598 (ML) No Chinese No [19]

10 MAPE Gated Recurrent Unit Yes 0.382 Yes English Yes [38]

11 F1 Cross Encoder
(FinBERT Finetuned) No 0.789 No English No [4]

11 F1 Translate + Cross Encoder
(SEC-BERT) No 0.641 No Chinese No [4]

12 F1 MBERT, Cross Encoder (MBERT) No 0.721 (1st task),
0.755 (2nd Task) Yes Bengali Yes [37]

13 F1 MBERT+Classifier, Translate +
RoBERTa, Translate+MBERT Yes

0.680 (1st task),
0.950 (2nd task),
0.590 (3rd task)

Yes Hindi No [15]

13 F1 MBERT+Classifier, Translate +
RoBERTa, Translate+MBERT Yes

0.650 (1st task),
0.920 (2nd task),
0.550 (3rd task)

Yes Bengali No [15]

13 F1 MBERT+Classifier, Translate +
RoBERTa, Translate+MBERT Yes

0.680 (1st task),
0.920 (2nd task),
0.580 (3rd task)

Yes Telugu No [15]

14 NA Gradio (frontend) NA NA NA Various Yes [23], [18], [17], [26]

Furthermore, we share our findings from participating in various
FinNLP shared tasks. While we could achieve SOTA performance
in most cases, there is further scope for improvement specifically
for low resource languages.

In future, we would like to embrace multi-modality and focus
on low resource Indic languages. We aspire to create India specific
multilingual knowledge graphs and work on improving the com-
prehensibility of financial texts in Indic languages. Subsequently,
we would like to simplify and summarize the different financial doc-
uments (like economic reviews, budgets, etc.) which are released to
cater the interests of masses. We would like to extensively explore
if NLP can be leveraged to predict the outcome of Initial Public
Offerings.
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