
EasyChair Preprint
№ 7613

A Bare Machine Tool to Learn System Internals in
Computer Science Education

Joel Weymouth, Ramesh Karne, Alexander Wijesinha and
Dheeraj Naraharisetti

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 28, 2022

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 IEEE

A Bare Machine Tool to Learn System Internals in

Computer Science Education

Joel Weymouth

 Computer and Information

Sciences

Towson University

Towson, MD USA

jweymouth@towson.edu

Ramesh K Karne

 Computer and Information

Sciences

Towson University

Towson, MD USA

rkarne@towson.edu

Alexander L Wijesinha

Computer and Information

Sciences

 Towson University

Towson, MD USA

awijesinha@towson.edu

Dheeraj N Naraharisetti

Marriotts Ridge High School,

Marriotsville, MD

dheeraj.naraharisetti

@gmail.com

Abstract— Research in Bare Machine Computing has

experienced significant changes over the years. As a result of

the recent events of the pandemic and the need for remote

learning, the Bare Machine Internet (BMI) as part of the

Bare Machine Computing (BMC) paradigm experienced

further studies. This research created tools to examine the

internals of the protocols, memory, and scripts as a BMI

became feasible. With the increased visualization in teaching

Computer Science and remote learning, these features

created with the BMI were considered efficacious in

Computer Science Education (CSE) BMC/BMI is used in

programming applications to run directly on a device. The

paradigm is software that runs directly against the hardware

using CPU, Memory, and I/O. The software application runs

without an Operating System and resident mass storage. An

essential part of the BMC paradigm is the Bare Machine

Internet. It utilizes an Application Development model

software that interfaces directly with the network and file

servers' hardware. Because it is "bare," it is a powerful

teaching and research tool that can readily display the

internals of the network protocols, software, and hardware of

the applications running on the Bare Server. The research

demonstrated that the bare server was accessible by laptop

and smartphone/android. The purpose was to show the

further practicality of Bare Internet in Computer Engineering

and Computer Science Education and Research. It also

showed that an undergraduate student could use a bare server

with any device and browser at any release version connected

to the internet. This paper presents the Bare Web Server as

an educational tool. We will discuss possible applications of

this paradigm.

Keywords— Bare Machine Computing, Online Research,

Operating Systems Introduction

I. INTRODUCTION

This research and paper are to discuss the process of developing

a bare application that runs on a bare web server for an

educational tool. Innovation within computer science

education is not new at all. Papers discussing innovation in

education are not new and can be traced into the 1990s. For

example, Oakley advocated the virtual classroom [13] and

created the environment supporting the asynchronous

classroom.[14]. Computer Science Education Research has

evolved from traditional lecture pedagogy with lab-based

learning to simulation game-based learning[11]. Further, the

first paper that suggested the BMC paradigm by Karne was in

1995 [1]. BMC has been successfully demonstrated in several

contexts, from database applications to web servers. The

overall work concerning Bare Machine Computing will be

related to this research later. In the meantime, Figure 1 shows a

high-level presentation of the paradigm compared to

conventional computing. Applying the BMC paradigm in

further research and developing a learning tool was prodigious

since lockdowns required a lot of remote research over the past

year. Nirmala [18] suggested further study to leverage personal

devices. With challenges, the research also uncovered

possibilities and later avenues of research that would make the

BMC paradigm a necessary and practical part of Computer

Science Education. See Fig1, 2.

The paper highlights the challenges and findings of creating a

learning tool on the bare web server and is organized as follows:

Section 2, Bare Machine Computing and related work. Section

3, Educational Bare Tool Design and Implementation. Section

4, Demonstration of the educational tool, what this tool does.

Section 5, Potential of the instrument in C.S. Education. Section

6, the significance of this research and further research; the

broader impact of using bare devices in the classroom; section

7 Significance of this research and other research; the more

general result of this work to use bare devices in the school.

Section 8, Conclusions

II. BARE MACHINE COMPUTING AND RELATED WORK

The bare Machine Computing (BMC) paradigm is based on two

fundamental principles. First, a computing device must be bare,

and an application is written in the BMC programming

methodology. It is an application and event-driven paradigm. A

single or a set of end-user applications are bundled as a single

monolithic executable, and applications directly communicate

with hardware with no middleware. Fig. 1 illustrates such a

concept. Traditional system calls provided by an operating

system are replaced by application calls or direct hardware

interfaces. A computing box is made bare, and there is no mass

storage onboard, no operating system running in the box. A

given application or suite is a self-controlled, self-managed, and

self-executed entity.

Application programs are made independent of execution

environments, thus making them last for an extended period.

End-user applications are derived using object-oriented

abstraction to explode application space. Examples of

applications include text processing, spreadsheets, email,

server, browser, online meetings, payroll, etc. These

applications are written in a single programming language

development such as C/C++/Assembly, which can live for an

extended period. As the operating system is eliminated, it

tumbles all layers in current information technology and

reduces obsolescence and inherent security. The computing

device has no valuable resources to be exploited by an intruder.

A given application suite is carried on a user-centric flash drive,

has ownership, and can be run on any bare computing device.

At this point, an Intel-based computing device is assumed to

run bare applications. However, one can devise applications to

run on any instruction set architecture.

The Bare Machine paradigm has some very distinct

characteristics. A BMC user carries the required application

suite on a removable device, such as a flash drive, and can

connect to any available bare device without any ownership.

Before the pandemic, the research and development were

conducted exclusively in the BMC laboratory environment,

locally hosting bare machines containing various application

development projects. This BMC research has successfully

produced many applications [2]-[11] on bare devices in the

BMC laboratory, some of them being the following:

a) Bare Text Browser: BMC research produced a Bare

Text Browser, a self-contained, self-managed, and self-

controlled application handling memory management and a

new API that communicates directly with the hardware and

manages its threads.

b) VOIP (with IPSec): BMC research proved that Voice

Over Internet Protocol (VOIP) did not need an operating

system

c) Webservers (TLS): BMC Research has produced bare

Web Servers that can communicate with each other.

Researchers have developed a standard BMC Web Server

module to work on a Bare Machine.

d) Split Servers (Protocol Split): BMC research did TCP

protocol splitting using two bare servers. One of the servers was

a connection server and a data server splitting the TCP protocol

into its connection and data phases, executing these phases on

different machines during a single HTTP request.

e) Email Client: BMC research developed an email

server working on bare machines. This email server created

was multi-threaded and allowed multiple users at any given

time.

f) SQLite (Database): BMC research transformed and

added SQLite to the list of applications that operate on a bare

machine. The D.B. engine lends several levels of abstraction

beyond the standard O.S. However, it is heavily dependent on

system calls.

g) Multicore Web Server Architecture: The first BMC

webserver was single-core and only 32 bit. Later the BMC

paradigm migrated to multicore and is now compatible with 64-

bit architecture.

h) IPSec: The IPSec baseline research suggested

designing future versions of IPSec for high-performance or

high-security bare P.C. applications and devices such as

security gateways.

i) Gateways and Routers: BMC research has adapted

APIs working with gateways and routers compatible on a bare

P.C. using a six to 4 gateway, with IPv4 and IPv6.

These accomplishments make it possible to present the inner

workings of operating systems, networks, protocols, binary

executables, and devices in a manner that a student can easily

understand. For example, from the memory dump in the

application, students can learn how data is stored in memory

and trace the actual value present in any memory address during

debugging. BMC research can be a helpful teaching tool for

computer science and engineering education. It dissects the

executable and interacts with the bare device, which can be

observed in real-time. As BMC applications avoid all

middleware, there is a great potential for using this computing

paradigm for educational purposes in computer science and

related areas.

III. EDUCATIONAL BARE TOOL (EBT): DESIGN & USE

Educational Bare Tool (EBT) is motivated by the inherent

simplicity in the BMC paradigm. Using this tool may be the

easiest way to teach students the internals of a computer system.

A student can understand the system internals (hardware and

software) much easier, as the programmer has complete control

of programming and execution of a given application suite. An

existing Web server is modified to create the EBT

Fig. 1 Conventional and Bare Machine Computing

System. (Fig. 2) illustrates a system view of this tool. A BMC

client, an O.S.-based desktop client, or an iPhone-based client

can communicate with the bare Web server. Conventional

client/server protocols communicate between a client and a

server. Using the traditional HTML and PHP pages, EBT

provides system internals (hardware and software) knowledge

to a given student. This design mainly focuses on network

protocol internals, task switching states (TSS), and memory

dumps. A student can view a packet coming in from a

network to internal details of the packet. All packets coming in

are captured and stored in a circular list (receive list). All

packets to be transmitted are stored in a circular list (transmit

list). A student can view packets in the arrival order or

transmitting order. A circular list is full wraps around the list

for easy implementation. When a client request comes to a

server, it will create a task and run this task until the request is

complete. The request state and the CPU facilities are stored in

TSS (task segment state). A student can view all general-

purpose registers, stacks, program counter, and other

parameters dynamically at the client site.

All client requests came as PHP or HTML page requests,

satisfying ETHERNET, I.P., and TCP protocols. TSS,

Memory, CODE, and the Receive/Transmit Descriptors. With

a few modifications to the existing Webserver, the EBT was

designed and implemented to provide learning capabilities for

students in understanding network protocols and other system

facilities. The enhanced code was written in C++ as the client

requested special functions.

There is a great potential to enhance EBT to view more system

internals. Notice, the code changes made in the Web server are

minimal (~1200 lines of code), and the majority of the work

involved was designing HTML and PHP pages. The simplicity

and extensibility of bare Webserver make the design changes

flexible and easier to test.

The Bare Server operates through a simple USB attached to a

bare device powered up, with the bare file server to load all

relevant files used in the tool. Considering the tool is a Bare

 Application, this approach applies to any Bare

Application running on a bare server accessible to a client.

IV. THE TOOL IN PRACTICES

The tools start by opening a browser opening the site

Baremachinecomputing.com/index.htm. (Fig. 3) A closer

look at the page shows the six options. (Fig. 4). These six

options: Ethernet Protocols (Fig 5), Internet Protocols (Fig

6), and TCP Protocols (Fig 7). Ethernet Protocols further

examines the descriptors for receiving and transmitting the

data packet. The TSS Code (Fig 12) and Memory Dump (Fig

13) discuss the internals of the memory-related descriptors.

A. Figures:

Fig 2 Bare Internet – the Server is a BARE Server

Fig. 3 EBT Main Menu

Fig. 4 Selection

Fig. 7 Transmit Protocol

Fig 5 Ethernet Protocol Header

Fig 6. Internet Protocol Header

Fig 8 Trouble Shoot Script Internal

Fig 9. Bare Server Software Internals (Code Dump)

Fig 10. Internal Memory (Memory Dump)

Fig 11. Receive Descriptor

Fig 12. Transmt Descriptor

V. POTENTIAL OF THE TOOL IN C.S. EDUCATION

Tools examining the internals of packets are not new.

Wireshark accomplishes this [16] or MENeT [15] are just two

examples of products that capture, filter, and display various

packets from UDP, TCP, I.P., and Ethernet Protocol. The goal

was not to build another packet sniffer. Instead, this research

wishes to demonstrate BMC in Computer Science Education.

Another major thing that sets this apart from Wireshark, is

Ndatinya et al. demonstrated Wireshark as a Network Forensics

tool, and the EBT is for education. [17]

The conventional impression of this tool is that it is a different

flavor from Wireshark. Wireshark does: This tool does things

that other devices like Wireshark do not perform. [16]

First, this tool identifies the Receive Descriptor List (RDL) and

the network driver's Transmit Descriptor List (TDL). Many

students do not know the existence of the RDL/TDL, but this

tool introduces the concept to the Computer Science Student.

(Fig 11, 12) The TDL is the data segment that is the link

enabling the adapter to track transmitted packets in memory.

Each sent packet requires one or more Transmit Descriptors.

Receive Descriptors complete the same function but for the

packets received. This feature takes the tool deeper than the

data packet, exposing and dissecting the memory behind the

network protocols. The device also looks at all the internal

memory in detail with the Trouble Shooting Script Internals

(see Fig 5), referred to as TSS Dump. Also a snapshot of the

Bare Server Memory is available (see Fig 10) where the student

may specify a specific address. The RDL and TDL screen has

the address of each descriptor, so the student may examine

where in memory these objects exist. Understanding the

concepts of addresses in Computer Science is critical to

problem solving and understanding system internals. There is

also a way to see the bare internet software that interfaces

directly with the hardware is also available for analysis. (see

Fig 9).

The tool was introduced to several classes using Towson and

Morgan State University labs. What was significant concerning

these classes was that none of the students used the lab

desktops. Table 1 shows how the students were using their

devices. Table 2 shows the breakdown of student

demographics. Interestingly, all of the IT Majors had heard of

TCP, I.P., and Ethernet. None had ever heard of the TSS, TDL,

or RDL. All were impressed that they did not have to install the

tool. All I.T. majors had not considered their phones had a Mac

Address and an I.P. address. The survey results are that all of

the I.T. students had a greater interest in the internals of the

Internet Operating Systems and a number of the non I.T.

students interested in I.T. with two students changing their

majors.

The conclusion was that system internal visualization and

dissection of the client devices gave a greater desire further to

investigate the architecture and intricacies of Computer

Science.

TABLE I. UTILIZATON OF DEVICES

Device %

Student Windows Laptop 70

Student MacBook 19

Student iPhone 9

Student Android 2

Lab Desktop 0

TABLE II. STUDENT DEMOGRAPHICS

Device %

Freshman/Sophomore 75

Jr/Sr 25

IT Major 56

Business 25

Other 19

VI. SIGNIFICANCE OF THIS RESEARCH AND FURTHER RESEARCH

A. The broader impact of this work is to use bare devices in

the classroom

During this research, students made the following observations

when using this tool.

The pressures of class and homelife creating a fast-paced and

stressful environment makes moving to virtual or visualization

learning paradigms helps them learn. Additionally, the effects

of the past year with the pandemic and the unclear future of how

assignments and classwork will be presented are helped by a

more remote and virtual learning environment. Using their own

devices without any special installation or configuration is a

great plus because they are used to their own device, and there

is no learning curve in using their own device. Finally, since

bare internet works with even obsolete devices as well as

Windows 10, or the latest Android or iPhone can support this

tool, a student is not faced with an unexpected expense in order

to use these tools. This gives the Computer Science Student

greater flexibility to learn.

B. Modified a bare Web server to act as an educational tool

Several aspects of this toolset it apart from other tools. Beyond

the apparent dissection of network protocols like Ethernet, I.P.,

and TCP, it looks at the bare server and the standard internet

transactions. The student using their device can easily access

this tool on the Bare Server. Therefore conventional clients can

access the tool on a bare server. It allows the beginning student

introduction to the complexities "under the covers" of any

operating system. It also introduces the early concept that

operating systems are not confined to laptops, phones, and

desktop computers but also to routers, bridges, hubs, and all

aspects of the digital world in which they are about to embark.

The more advanced student will see the internals of the memory

behind the protocols and the TroubleShooting Script (TSS).

Modern undergraduates no longer rely on the computer lab

within their university. They bring their device. The

Educational Bare Tool does not require installation. Using the

tool shows the diversity of each device. The EBT allows a

student to observe and analyze the memory internals behind

each network packet sent and received of the device. Users can

see internal details of packets coming into the driver, interior

components of software and hardware, and see the details can

be seen and understood by the undergraduate. The basis of this

tool can give a better insight into the internet, and it can dissect

the internals much faster. Even though the server runs on a

bare machine, it is accessible by conventional operating

systems through an intranet and the internet.

VII. CONCLUSIONS

The utilization of this tool in undergraduate CSE should focus

on improving its capabilities. Of course, visualization software

development will be part of CSE for the foreseeable future. So

will hardware using Operating Systems and Bare Machine

Computing. Computer Networks and Network Security also

will be part of the CSE curriculum. Therefore this will be a

continuation of a new type of research, the dissection, and

visualization of network protocols and operating systems as

new and better approaches to presenting these subjects.

If this research proves promising, additional studies will

examine the efficacy of a visualization/curriculum integration

to the learner and study what makes the operating systems and

networks, protocols for each level, testing, and possibly

understanding learning milestones or grade levels. Ideally, the

Software Engineering Architecture will enable the educator to

customize games for each student. That part is leveraging long-

established Information Technology concepts. Educators and

software engineers must settle the variable factors like and

implementation of the new paradigm.

REFERENCES

[1] Karne, R.K., Object-oriented Computer Architectures for New

Generation of Applications, Computer Architecture News, December
1995, Vol. 23, No. 5, pp. 8-19.

[2] He, L., Karne, R.K., Wijesinha, A.L., and Emdadi, A. A Study of Bare
P.C. Web Server Performance for Workloads with Dynamic and Static
Content, The 11th IEEE International Conference on High-Performance
Computing and Communications (HPCC-09), Seoul, Korea, June 2009,
p494-499.

[3] P. Appiah-kubi, R. K. Karne, and A. L. Wijesinha. A Bare PC TLS
Webmail Server, International Conference on Computing, Networking nd
Communications, ICNC 2012, Maui, Hawaii, January 2012, p.156-160.

[4] P. Appiah-kubi, R. K. Karne, and A. L. Wijesinha. A Performance Study
of Conventional and Bare P.C. Webmail Servers, The Seventh
International Conference on Networking and Services, ICNS 2011, p.280-
285.

[5] P. Appiah-kubi, R. K. Karne, and A. L. Wijesinha. The Design and
Performance of a Bare P.C. Webmail Server, The 12th IEEE International
Conference on High-Performance Computing and Communications,
AHPCC 2010, Sept 1-3, 2010, Melbourne, Australia, p521-526.

[6] N. Kazemi, A. L. Wijesinha, and R. Karne. Design and Implementation
of IPsec on a Bare P.C., 2nd International Conference on Computer
Science and its Applications (CSA), 2009.

[7] A. Alexander, A. L. Wijesinha, and R. Karne. An Evaluation of Secure
Real-Time Protocol (SRTP) Performance for VoIP, 3rd International
Conference on Network and System Security (NSS), 2009.

[8] G. H. Khaksari, A. L. Wijesinha, and R. Karne. Secure VoIP using a Bare
P.C. 3rd International Conference on New Technologies, Mobility, and
Security (NTMS), 2009.

[9] Ford, G.H., Karne, R.K., Wijesinha, A.L., and Appiah-Kubi, P. The
Performance of a Bare Machine Email Server, 21st International
Symposium on Computer Architecture and High-Performance
Computing (SBAC-PAD 2009), IEEE / ACM Publications, 28-31
October 2009, Sao Paulo, SP, Brazil, pp. 143-150.

[10] Ford, G.H., Karne, R.K., Wijesinha, A.L., and Appiah-Kubi, P. The
Design and Implementation of a Bare P.C. Email Server,33rd Annual
IEEE International Computer Software and Applications Conference
(COMPSAC 2009), Seattle, Washington, July 2009, p480-485.

[11] B. S. Rawal, R. K. Karne, A. L. Wijesinha. Split Protocol Client Server
Architecture, Seventeenth IEEE Symposium on Computers and
Communications (ISCC'12), July 1 -4, 2012, Cappadocia, Turkey.

[12] B. Jong, C. Lai, Y. Hsia, T. Lin, and C. Lu, "Using Game-Based
Cooperative Learning to Improve Learning Motivation: A Study of
Online Game Use in an Operating Systems Course," in IEEE Transactions
on Education, vol. 56, no. 2, pp. 183-190, May 2013, doi:
10.1109/TE.2012.2207959.

[13] B. Oakley, "The virtual classroom: at the cutting edge of higher
education," Technology-Based Re-Engineering Engineering Education
Proceedings of Frontiers in Education FIE'96 26th Annual Conference,
Salt Lake City, UT, USA, 1996, pp. 135-139 vol.1, doi:
10.1109/FIE.1996.569928.

[14] B. Oakley, "Helping faculty develop new asynchronous learning
environments," Technology-Based Re-Engineering Engineering
Education Proceedings of Frontiers in Education FIE'96 26th Annual
Conference, Salt Lake City, UT, USA, 1996, pp. 659-662 vol.2, doi:
10.1109/FIE.1996.573039.

[15] N. A. Junejo, N. Ahmed and A. Q. K. Rajput, "Network layer packet
analysis using MENeT," 7th International Multi-Topic Conference, 2003.
INMIC 2003., 2003, pp. 151-156, doi: 10.1109/INMIC.2003.1416681

[16] Shaoqiang Wang, Dongsheng Xu and ShiLiang Yan, "Analysis and
application of Wireshark in TCP/IP protocol teaching," 2010
International Conference on E-Health Networking Digital Ecosystems
and Technologies (EDT), 2010, pp. 269-272, doi:
10.1109/EDT.2010.5496372.

[17] Ndatinya, Vivens & Xiao, Zhifeng & Manepalli, Vasudeva & Meng, Ke
& Xiao, Yang. (2015). Network forensics analysis using Wireshark.
International Journal of Security and Networks. 10. 91.
10.1504/IJSN.2015.070421.

[18] N. Soundararajan, J. Weymouth, R. Karne, A. Wijesinha and N. Ordouie,
"Remote Collaboration Potential in STEM Education using Bare Machine
Computing Research," in 2020 International Conference on
Computational Science and Computational Intelligence (CSCI), Las
Vegas, NV, USA, 2020 pp. 872-878.doi:
10.1109/CSCI51800.2020.00164 Url:
https://doi.ieeecomputersociety.org/10.1109/CSCI51800.2020.00164

