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Abstract  

The world is currently facing a range of environmental challenges, including climate change, resource 
depletion, and biodiversity loss. Human-AI collaboration (HAIC) offers new momentum for addressing 
these issues. However, there is no comprehensive understanding of how HAIC can impact 
environmental sustainability. We conducted a systematic literature review on HAIC for Environmental 
Sustainability (ES). After analyzing 35 relevant articles, we identified 19 HAIC use cases for ES, such as 
smart sustainable mobility, route planning, and species identification.  The use cases show the potential 
of HAIC to positively impact ES. For instance, HAIC contributes to energy conservation, waste and 
pollution reduction, and biodiversity preservation. In addition, we identified three main modes of 
augmentation in HAIC for ES: decision support, interaction and adaptation, and engagement and 
communication. Based on our review findings, we outline a research agenda, highlighting gaps such as 
the lack of studies contemplating the organizational level of HAIC. 

 

Keywords: Human-AI collaboration (HAIC), Environmental sustainability (ES), Sustainability, 
Systematic literature review (SLR), Information systems (IS).  
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1 Introduction  

The Earth's environment is facing severe challenges, including climate change, biodiversity loss, and 
resource depletion posing severe threats to ecosystems and humanity. The urgency of addressing 
environmental issues has never been greater (Leahy 2019). As we advance into the digital age, Artificial 
Intelligence (AI) is increasingly recognized as one of the most promising tools for promoting 
environmental sustainability (Duan et al. 2019). While concerns exist about AI's potential to increase 
energy consumption and carbon emissions, its true value lies at a higher level—how it can promote 
environmental sustainability (ES). AI has demonstrated substantial environmental benefits by 
enhancing data analysis, improving monitoring capabilities, and providing accurate predictions across 
various ES domains (Konya and Nematzadeh 2024). For instance, AI can optimize water resource 
management, monitor air quality, and predict energy consumption patterns to aid conservation efforts 
(Chen et al. 2021; De Vito et al. 2020; Xiang et al. 2021).  

Several literature reviews have already summarized the applications of AI in environmental 
sustainability and offered suggestions for future development (Kar et al. 2022; Liengpunsakul 2021; 
Nishant et al. 2020; Schoormann et al. 2023). However, despite these advancements, the potential of AI 
cannot be fully realized without effective Human-AI Collaboration (HAIC) (Raftopoulos and Hamari 
2023)  . The foundation of HAIC lies in the complementary nature of human and AI strengths. AI offers 
three major advantages: first, it can automate repetitive and time-consuming tasks; second, it can 
process and analyze vast amounts of unstructured data; and third, it can integrate network resources to 
solve the most complex problems (Nishant et al. 2020). However, in some areas, fully removing human 
autonomy may not be desirable, particularly from a societal perspective, especially when addressing 
sustainability issues. In these situations, humans bring to the table strengths that AI lacks, such as 
intuition, creativity, and common sense (Hemmer et al. 2024). HAIC leverages the complementary 
strengths of human intelligence and artificial intelligence, enabling teams to achieve more collectively 
than either could accomplish independently (Dellermann et al. 2019). In this context, AI is used to 
augment human capabilities rather than replace them (Mandvikar and Dave 2023). 

Although many studies have designed HAIC systems or frameworks from a technical perspective to 
achieve specific environmental goals (Bennitt 2024; Loske and Klumpp 2021), we lack a comprehensive 
overview of existing research. Therefore, this paper aims to address the following questions: 1. In what 
domains can HAIC contribute to ES? (i.e., what are HAIC use cases?), 2. What are the impacts of HAIC 
on ES? 3. How can AI augment humans to improve ES? 

Addressing the three research questions, we provide a comprehensive overview of the state of the art of 
HAIC for ES enabling the identification of future research needs to explore how humans and AI work 
together to improve ES (Nishant et al. 2020; Taghikhah et al. 2022). We suggest a framework outlining 
19 use cases of HAIC for ES, 9 impacts of these various use cases and 3 main modes of augmentation in 
HAIC for ES. Additionally, we propose a research agenda that addresses gaps in current knowledge, 
particularly in underexplored areas such as raw materials management and pollutant treatment. 
Furthermore, the study offers theoretical insights by integrating and extending existing research, while 
also calling for the development of a unified evaluation framework to assess the effectiveness of HAIC 
systems. These contributions advance academic understanding and provide practical guidance for 
implementing more effective HAIC practices in environmental sustainability initiatives. 

The remainder of this paper is organized as follows. Section 2 presents the background of this study. 
Section 3 outlines the research methodology employed. Section 4 details the findings of the 
investigation. Section 5 discusses the findings, analyses the potential implications, and proposes a 
research agenda. Section 6 concludes the paper and discusses its limitations. 

2 Background 

Since 1987, when the World Commission on Environment and Development (WCED) introduced the 
concept of sustainability, efforts have focused on addressing environmental, social, and economic 
challenges. Defined as "development that meets the needs of the present without compromising future 
generations' ability to meet their own needs" (WCED 1987), sustainability emphasizes the widely 
accepted triple bottom line, which integrates the interdependent pillars of environment, society, and 
economy (Elkington and Rowlands 1999). In the intersection of AI and sustainability, there are two 
easily confused terms: sustainability of AI, and AI for sustainability. Sustainability of AI refers to the use 
of sustainable data sources, algorithms, and hardware to reduce carbon footprints and energy 
consumption (Van Wynsberghe 2021).  
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Research indicates that training AI models can lead to significant energy consumption and carbon 
emissions, with variations across different algorithms and hardware (Strubell et al. 2020). Therefore, 
developers should focus on creating more efficient and sustainable AI algorithms to enhance the 
sustainability of AI. AI for sustainability refers to the application of AI technologies to address 
environmental, social, and economic issues, thereby promoting sustainable development (Van 
Wynsberghe 2021). For instance, AI can be applied in water resource management to predict and 
optimize water conservation efforts (Nishant et al. 2020). In smart manufacturing, AI can enhance 
productivity, reduce energy consumption, and improve worker well-being (Choudhury et al. 2022). 

HAIC refers to the process in which humans and AI systems actively collaborate, continually interact, 
and adapt to achieve a common goal (Lai et al. 2021). The essence of HAIC lies in leveraging the 
strengths of both humans and AI to achieve more than either could alone. HAIC has been successfully 
applied across economic, social, and environmental dimensions. Economically, HAIC is primarily 
focused on enhancing productivity (Sowa et al. 2021), increasing efficiency (Zhang et al. 2022), and 
reducing costs (Wang and Huang 2023). Additionally, HAIC can improve the quality of customer service 
by integrating human emotional perception with AI's processing efficiency (Qin et al. 2022). Socially, 
HAIC is widely applied in healthcare (Lai et al. 2021), education (Molenaar 2022), and the enhancement 
of worker well-being (Sowa et al. 2021). Environmentally, HAIC has extensively engaged in areas such 
as smart grids (Fan et al. 2024) and sustainable manufacturing (Meng et al. 2022). 

Environmental sustainability is a crucial dimension of overall sustainability (Morelli 2011; Nishant et al. 
2020). This encompasses various topics, including low-impact transportation, conservation of 
environmental assets (biodiversity, water resources, energy use, renewable energy, raw materials such 
as food and minerals, land-use sustainability), sustainable agriculture, and management of waste and 
pollution (waste reduction, recycling, reuse, repair, using environmentally responsible material, 
pollution monitoring, pollutant treatment). As the Earth's environment continues to deteriorate, there 
is growing concern about environmental sustainability (Nishant et al. 2020). Although HAIC has been 
practiced across various ES topics, how HAIC impacts ES remains unclear. Therefore, this study aims 
to identify different HAIC use cases for ES, discuss its impacts and modes of augmentation. 

3 Methodology 

This paper conducts a systematic literature review (SLR) of studies related to HAIC for ES. We followed 
the protocol by Kitchenham (Kitchenham 2004). The major advantage of SLR is that it provide 
information about the effects of phenomenon across various contexts and empirical methods 
(Kitchenham 2004), which is highly relevant to this study. Additionally, compared to traditional 
narrative reviews, it helps reduce bias (Tranfield et al. 2003). The aim of this research is to offer a 
comprehensive and impartial understanding of HAIC for ES through the integration and analysis of 
existing literature (Shahzadi et al. 2024). The first author independently analyzed and synthesized the 
results while adhering to SLR standards to maintain objectivity. After discussions and adjustments with 
the second author, the third author reviewed the results to minimize bias. 

We selected the Web of Science (WOS) database for our search due to its rigorous and objective filtering 
criteria, which ensure the reliability of the studies it includes (Merigó and Yang 2017). Additionally, AI 
began gaining prominence around 2010, as noted by Digital Trends (Digital Trends 2019), making this 
an appropriate starting point for our search. To ensure comprehensive coverage, we combined a 
Systematic Literature Search with hermeneutic research, an interpretative and iterative approach that 
identifies relevant works (Boell and Cecez-Kecmanovic 2014; Nuswantoro et al. 2023). Unlike a linear 
search process, the hermeneutic literature review allows researchers to read, analyze, and revisit sources 
in cycles, deepening the understanding of complex and ambiguous topics over time (Boell and Cecez-
Kecmanovic 2014). Additionally, HAIC is a relatively new term, with various studies discussing it under 
different terminologies (Memmert and Bittner 2022; Raftopoulos and Hamari 2023). Solely relying on 
specific search terms may result in missing relevant literature, as many articles do not directly use the 
term. A hermeneutic literature review mitigates this issue by allowing broader interpretations of the 
literature (Boell and Cecez-Kecmanovic 2014).  

3.1 Systematic Literature Search 

Due to the evolving terminology of HAIC, we included various labels such as hybrid intelligence, 
augmented intelligence, and human-AI teams, as these are often used synonymously under the broader 
definition of HAIC (Memmert and Bittner 2022; Raftopoulos and Hamari 2023). In terms of ES, we 
adopted Nishant's definition of the ES topics(Nishant et al. 2020). Finally, we employed inclusive search 
terms: ("hybrid intelligence" OR "Augmented Intelligence" OR ("human" AND ("AI" OR "artificial 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/water-resources
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intelligence") AND ("team*" OR "collaboration"))) AND ("sustainable" OR "sustainability" OR 
"environmental" OR "ecological" OR "air" OR "water" OR "energy" OR "climate" OR "transportation" 
OR "agriculture" OR "biodiversity" OR "pollution" OR "recycle" OR "waste" OR "pro-environment"). 

3.2 Selection 

We limited our search to articles, conference proceedings, and books. A keyword search in the WOS 
database identified 1,200 papers downloaded into an Excel sheet for further analysis. The papers were 
selected based on the following inclusion criteria: (1) focus on the collaboration between humans and 
AI, (2) focus on ES topics, and (3) written in English. The exclusion criteria were: (1) only focus on AI 
applications instead of collaboration with humans, (2) not focus on ES topics, (3) not written in English, 
(4) full text not accessible, and (5) low-quality research (i.e., non-peer reviewed articles). 

The initial screening involved reviewing the titles and abstracts of the papers against the inclusion 
criteria, leading to the exclusion of 864 papers. The remaining papers were then read in full and re-
reviewed based on the criteria, resulting in the exclusion of 315 papers. Ultimately, 21 papers were 
identified as relevant. These 21 papers were then included in a hermeneutic review search. By reviewing 
21 articles, we gained a deeper understanding of the research questions, which led to the identification 
of additional search terms and multiple iterations of the search process. Additionally, we employed a 
snowballing strategy, which works by identifying other relevant articles that are cited within the 
previously reviewed papers (Boell and Cecez-Kecmanovic 2014). Through an iterative process and 
contextual understanding, we identified an additional 14 relevant articles. Thus, a total of 35 articles 
were included in the final analysis. The sample selection process is illustrated in Figure 1. 

 

Figure 1. The Selection Process 

3.3 Data Extraction and Analysis 

The data extraction process aimed to identify key features in the selected articles to address the research 
questions (Okoli 2015). The basic information of the remaining 35 papers (publication year, authors, 
publication venue) was downloaded into an Excel sheet. After that, the first author developed an initial 
coding set based on the research questions, including HAIC use cases, impacts, and modes of 
argumentation, and manually coded all the papers. We applied thematic analysis to perform content 
analysis and used Nishant’s definition of ES topics to categorize HAIC use cases. After the first round of 
coding, the authors reviewed and reflected on the results to assess their contribution to the research 
objectives and determine whether additional codes were necessary. Consequently, additional codes were 
generated to assess performance (research methods). The first author then re-coded the papers using 
the final code set, discussed the results with the second author, and the third author reviewed the results. 
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4 Findings 

4.1 Identification and Bibliographic Data 

We reviewed and analyzed 35 publications published between 2010 and 2024, including 9 conference 
papers and 26 journal articles. As shown in Figure 2, HAIC for ES is a relatively new topic, with the first 
related publication appearing in 2012. The literature from 2012 to 2020 primarily focused on the 
technical aspects of deep learning and its interaction and collaboration with humans. It wasn't until 
2020 that the concept of HAIC in the context of ES was first introduced, gradually gaining attention 
from the academic community. Since then, the number of publications has steadily increased each year.  

Of the reviewed literature, 21 papers were empirical, while 14 were non-empirical. The papers were 
classified as empirical and measured the performance of HAIC use cases in ES, demonstrating the 
effectiveness of HAIC. In contrast, the non-empirical papers either did not include performance 
evaluation or suggested it as an area for future work. The results indicate that most HAIC use cases for 
ES have confirmed the potential in this area. However, challenges remain in quantifying and measuring 
the performance of certain systems. 

 

Figure 2.  Publication year of papers 

4.2 HAIC for ES: Use Cases and Their Impacts 

To better understand how HAIC impacts ES, a summary of HAIC use cases within ES topics is provided 
as follows and illustrated in Table 1.  

4.2.1 HAIC in low-impact transportation 

Low-impact transportation aims to reduce the environmental impact of transportation by minimizing 
energy use and road transport pollution, as well as by introducing clean-fuel vehicles (Wismans et al. 
2015). One important way to achieve low-impact transportation is through Smart Sustainable Mobility, 
which leverages information technology to optimize transportation systems, reducing congestion and 
emissions while meeting the diverse needs of users, thereby promoting sustainable development 
(Khamis and Malek 2023). This significantly reduces energy consumption and carbon emissions and 
decreases air pollution (Ketter et al. 2023). Moreover, efficient and safe route planning reduces 
congestion and vehicle energy consumption and significantly lowers emissions (Gajanand and 
Narendran 2013). By integrating human expertise with AI technology, HAIC can optimize route 
decisions in the face of complex and dynamic road conditions, further reducing carbon emissions and 
fully supporting the achievement of low-impact transportation. 

4.2.2 HAIC in conservation of environmental assets 

HAIC in biodiversity: Biodiversity refers to the variety of life forms on Earth, encompassing genetic, 
species, and ecosystem diversity, and includes diversity within and between (Jennings and Gaston 
1996). Species identification, which involves classifying organisms based on their unique characteristics, 
provides crucial data for assessing and monitoring biodiversity (Balakrishnan 2005). This data is 
essential for implementing targeted conservation measures and effectively preserving biodiversity 
(Steele and Pires 2011). HAIC significantly expands the scope of sample collection by encouraging 
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widespread citizen participation in the collection of species images. By integrating AI image recognition 
technology, HAIC can accurately map species migration corridors, thereby promoting biodiversity 
conservation.  

HAIC in groundwater: Groundwater is a critical water resource globally, and its monitoring is 
essential for the timely detection and prevention of groundwater pollution (Madsen et al. 2007). 
Groundwater monitoring provides scientific evidence for water resource management, aiding in the 
development of effective conservation policies (Makanda et al. 2022). HAIC plays a vital role in this 
process by enabling AI systems to continuously learn from expert feedback, optimizing the planning and 
layout of monitoring wells, and improving monitoring efficiency and accuracy (Babbar-Sebens and 
Minsker 2012). This AI-based dynamic learning mechanism not only enhances the deployment of 
monitoring wells but also further promotes the effective protection of water resources. 

HAIC in energy use: The process of energy utilization, which includes production, distribution, and 
consumption, is a critical aspect of energy management (Simion et al. 2023). In this process, HAIC has 
found widespread application in smart grids. In smart grids, AI can assist with decision-making by 
providing real-time monitoring and data analysis. Humans interact and collaborate with AI systems and 
grid control systems through visual interfaces, playing a critical role in complex reasoning and decision-
making, especially in uncertain or emergency situations. Through this process, HAIC can significantly 
enhance decision-making quality in smart grids, leading to more efficient energy production, 
distribution, and transmission, thereby reducing energy waste and improving energy utilization 
efficiency (Fan et al. 2024; Pedretti et al. 2021; Stecyk and Miciuła 2023). In the energy distribution 
phase, HAIC plays a key role in Energy Building Optimization and energy operation by optimizing the 
energy distribution process, further enhancing energy efficiency and minimizing unnecessary energy 
waste (Alsamhi et al. 2024; Yang et al. 2022). Moreover, HAIC also contributes to the sustainability of 
AI technology itself by selecting more sustainable machine learning methods, which reduce the energy 
consumption of AI systems (CHAABEN 2023). 

HAIC in renewable energy: Renewable energy refers to energy derived from natural processes that 
are replenished continuously under sustainable use, such as solar and wind energy (Arman and Yuksel 
2013). The development of renewable energy helps reduce dependence on fossil fuels, thereby mitigating 
climate change and lowering carbon emissions (Arman and Yuksel 2013). However, developing 
renewable energy requires significant investment in infrastructure. The integration of HAIC and Cyber-
Physical-Social Systems (CPSS) can support the effective incorporation of renewable energy into existing 
energy infrastructures, optimizing renewable energy utilization and reducing carbon emissions 
(Alsamhi et al. 2024). In renewable energy systems, AI uses image processing technologies to monitor 
equipment for potential faults and provides diagnostic recommendations. Human operators, leveraging 
their professional expertise, conduct on-site inspections and make final fault judgments based on AI's 
suggestions. This collaboration between AI and human expertise enhances the accuracy and efficiency 
of fault detection and maintenance processes in renewable energy systems. By detecting potential 
equipment failures in advance, HAIC can effectively reduce unplanned downtime, lower operational and 
maintenance costs, and minimize waste of renewable energy resources (Shin et al. 2021). 

HAIC in land-use sustainability: Sustainable land-use refers to the balanced allocation of 
environmental resources to meet current and future needs (Kruseman et al. 1996). Reasonable planning, 
development, and protection of land resources under specific spatial and temporal conditions are crucial 
for achieving land sustainability (Han et al. 2023). A land planning design study in Seoul, South Korea, 
found that AI-assisted design can better integrate different human planning approaches into land-use 
decisions, thereby improving energy efficiency and land utilization rates, and promoting land 
conservation (Quan et al. 2019). 

4.2.3 HAIC in sustainable agriculture 

Sustainable agriculture refers to the enhancement of agricultural productivity without causing adverse 
effects on the environment and ecosystems (Pretty 2008). Improving agricultural sustainability can 
reduce the consumption of natural resources, protect biodiversity, and maintain the health of soil and 
water resources (Tilman et al. 2002). HAIC leverages the targeted integration of human intelligence and 
AI computational systems to optimize crop planning decisions, effectively balancing biodiversity and 
productivity (Berger et al. 2024). Additionally, by relying on farmers' experience, HAIC contributes to 
the effective preservation of soil health (Schöning and Richter 2021). 

4.2.4 HAIC in management of waste and pollution 

HAIC in waste reduction: Rapid urbanization, population growth, and economic development have 
accelerated waste generation, leading to pollution and waste management challenges, necessitating new 
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strategies for waste management (Fang et al. 2023). Zhou et al. (2020) designed an intelligent waste 
management system that combines human strategic planning with AI's real-time monitoring 
capabilities to optimize waste disposal processes, achieve controlled operations, and enhance waste 
treatment efficiency (Zhou et al. 2020). Additionally, HAIC enhances human waste-sorting capabilities 
through AI, improving the accuracy of waste classification. Moreover, the interaction and engagement 
between humans and AI further increase public participation (Jacobsen et al. 2020) 

HAIC in recycling: In manufacturing, disassembly is considered a critical prerequisite and bottleneck 
for promoting recycling (Sassanelli et al. 2021). Several studies have integrated HAIC into smart 
disassembly to facilitate recycling. First, AI can detect disassembled parts using algorithms to assess 
their condition and prepare them for further processing. Second, AI plans disassembly paths through 
algorithms and assigns tasks to either humans or collaborative robots based on task complexity. Finally, 
AI dynamically adjusts the task sequence through real-time feedback from sensors and hands over 
control to humans when emergency situations arise. For example, Meng et al. (2022) reviewed the 
intelligent disassembly of electric vehicle batteries and found that integrating human intelligence into 
AI-driven smart disassembly can improve safety, adaptability, and disassembly efficiency (Meng et al. 
2022). Other studies have shown that HAIC in the disassembly of waste parts can optimize task 
allocation, provide personalized disassembly, and reduce disassembly costs(Amirnia and Keivanpour 
2024; Jin et al. 2022). 

HAIC in reuse: The circular economy aims to maximize the reuse of materials and components 
(Ghisellini et al. 2018). By extending the life cycle of materials and components, it reduces resource 
consumption and lowers energy use during production and waste treatment (Minunno et al. 2020). In 
the context of Industry 5.0, humans are integrated into intelligent processes, actively participating in 
the lifecycle assessment of products. AI, through the use of sensors and algorithms, dynamically 
provides real-time information on the product’s health, energy consumption, and carbon footprint 
throughout its lifecycle. This helps humans make informed decisions on product maintenance, recycling, 
and material reuse, enhancing sustainability efforts and resource efficiency (Turner et al. 2022). 

HAIC in using environmentally responsible material: Environmentally responsible materials 
are those that have minimal negative environmental impact. Using such materials can reduce 
environmental pollution (Ljungberg 2005). A case study in artisanal industries found that HAIC can 
improve the quality of decision-making, enabling artisanal economies to choose more sustainable 
materials and resources (Eglash et al. 2020). Additionally, IBM designed a human-AI co-creation 
platform that accelerates the discovery of substitutes for toxic materials through multiple interactions 
and iterations between AI and humans (Jansen and Segura 2023). 

HAIC in pollution monitoring: Pollution monitoring provides real-time insights into pollution 
levels and trends, allowing for timely interventions to mitigate environmental harm (Artiola and 
Brusseau 2019). Research by Myeong and Shahzad demonstrated that incorporating citizen intelligence 
and public participation into air monitoring systems can significantly enhance the efficiency of air 
pollution management (Myeong and Shahzad 2021). 

4.2.5 HAIC in environmental education 

In addition to its practices in ES topics, HAIC also holds significant potential in the intersection of 
environmental and social dimensions, primarily in environmental education. Environmental education 
is a crucial means of promoting sustainability, as it is closely connected to everyone in society (Boca and 
Saraçlı 2019). However, the biggest challenge in environmental education is encouraging people to 
adopt a sustainable lifestyle (Zsóka et al. 2013). On one hand, HAIC can enhance human environmental 
knowledge and promote participation in environmental activities through AI-human co-creation and 
interaction. On the other hand, HAIC can provide more personalized environmental recommendations 
through human interaction and adaptation, thereby encouraging pro-environmental behaviours 
(Puerta-Beldarrain et al. 2023; Sanchez et al. 2022). 

4.3 Modes of augmentation 

We have found that 19 HAIC use cases across various ES topics have generated a range of positive 
impacts on ES. Additionally, in the context of ES practices, after analyzing these 19 use cases, we have 
synthesized three main modes in which AI augments humans to promote ES: decision support, 
interaction and adaptation, and engagement and communication. 



Australasian Conference on Information Systems  Zhang et al 
2024, Canberra  Human-AI Collaboration for Environmental Sustainability 

  8 

ES Topics ES HAIC Subtopics HAIC Use cases References 

HAIC in low-
impact 
transportation 

Low-impact 
transportation 

Smart Sustainable Mobility (Ketter et al., 2023) 

Route planning (Loske & Klumpp, 2021a, 
2021c) 

HAIC in 
conservation of 
environmental 
assets 

Biodiversity Species identification (Bennitt, 2024; Picek et 
al., 2022) 

Water resources Groundwater monitoring (Babbar-Sebens & 
Minsker, 2012) 

Energy use Smart Grids (Alsamhi et al., 2024; Fan 
et al., 2024; Pedretti et al., 
2021; Stecyk & Miciuła, 
2023; Zhang et al., 2018) 

Energy Operation & 
Building Optimization 

(Alsamhi et al., 2024) 
(Yang et al., 2022) 
(CHAABEN, 2023) 

Renewable energy Renewable Energy production (Alsamhi et al., 2024) 

Predictive maintenance (Shin et al., 2021) 

Land-use 
sustainability 

Land planning (W. Chen et al., 2020; 
Quan et al., 2019) 

HAIC in 
sustainable 
agriculture 

Sustainable 
agriculture 

Crop planning 
(Berger et al., 2024; 
Schöning & Richter, 2021) 

HAIC in 
management 
of waste and 
pollution 

Waste reduction Waste Treatment (Jacobsen et al., 2020; 
Zhou et al., 2020) 

Process Optimization ( Alsamhi et al., 2024) 

Recycling Disassembly (Amirnia & Keivanpour, 
2024; Jin et al., 2022; Liu 
et al., 2019; Meng et al., 
2022; Qin et al., 2024; 
Wang et al., 2023) 

Reuse Circular Economy (Turner et al., 2022) 

Using 
environmentally 
responsible material 

Environmental Material 
choosing 

(Eglash et al., 2020) 

Replace toxic materials (Jansen & Segura, 2023) 

Pollution monitoring Air pollution management (Myeong & Shahzad, 
2021) 

HAIC in 
Enviromental 
education 

Environmental 
education 

Public engagement (V. Y. Chen et al., 2024; 
Lc, 2023; Rafner et al., 
2023) 

Pro-environmental behaviour. (Puerta-Beldarrain et al., 
2023; Sanchez et al., 
2022) 

Table 1.  HAIC use cases in ES topics 

Decision support: HAIC can enhance the quality and performance of decision-making by integrating 
human strengths with AI capabilities, especially in complex and uncertain environments (Dolgikh and 
Mulesa 2021; Jain et al. 2022; Lin et al. 2024). In decision support, AI assists decision-making by 
analyzing vast amounts of data and performing complex computational tasks, offering 
recommendations or analyses. Humans, in turn, evaluate these AI-generated suggestions, integrating 
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their professional expertise, experience, and ethical considerations to make the final decision. This 
collaborative approach significantly enhances efficiency in complex and dynamic environments and 
preserves human judgment. However, different individuals have varying perspectives on the role AI 
should play in decision support. Haesevoets' research indicates that in management decision, 5% of 
managers prefer AI to take a dominant role, 15% favor an equal partnership between humans and AI, 
50% prefer humans to have the upper hand, and 30% prefer humans to have complete control over 
decisions (Haesevoets et al. 2021). When tasks are allocated appropriately, HAIC can outperform 
decisions made by either humans or AI alone (Fügener et al. 2021). However, improper task allocation 
in HAIC systems can lead to a loss of human trust, negatively affecting decision outcomes (Rastogi et al. 
2022). Therefore, appropriate task allocation is crucial for effective decision support. Almost all HAIC 
use cases in ES emphasize the mode of decision support. For example, in smart grids, HAIC can optimize 
decision-making by combining AI's computational power with human logical reasoning, thereby 
improving energy efficiency (Fan et al. 2024). 

Interaction and adaptation: The success of HAIC relies heavily on effective interaction and feedback 
between humans and AI, as well as adaptation based on that feedback (Fragiadakis et al. 2024). 
Interaction refers to the exchange of information between humans and AI during the collaboration 
process. This interaction can occur through natural language, graphical interfaces, or visualization tools, 
ensuring that AI understands human needs while allowing humans to interpret AI's outputs (Yang et al. 
2019). Adaptability includes both AI learning from human decision processes and AI adjusting its 
behavior to positively influence collaborative performance (Zhao et al. 2022). Simultaneously, AI's 
adaptive capabilities encourage human partners to adjust their instructions, creating a bidirectional 
adaptation loop that enhances collaboration quality (Xu et al. 2011). This interactive and adaptive 
collaboration model enables more personalized decision-making and effectively boosts team 
performance while maintaining human trust in AI (Nikolaidis et al. 2017). In HAIC use cases for ES, 
system provides personalized services through interaction and adaptation, thereby improving team 
performance. For example, by integrating HAIC, intelligent transportation systems can adapt through 
interaction with humans to provide personalized low-carbon travel solutions, reducing energy 
consumption and carbon emissions (Ketter et al. 2023). 

Engagement and communication: Collaborative engagement can make HAIC more effective 
(Puerta-Beldarrain et al. 2023). Especially in the context of environmental sustainability, achieving 
sustainability goals requires broad societal involvement, where human actions play a crucial role (Vlek 
and Steg 2007). In HAIC systems, allowing users to actively participate in the decision-making process 
fosters a sense of belonging, making them feel like a part of the system rather than passive recipients. 
This approach enhances user engagement and encourages more active participation in sustainability 
initiatives (Puerta-Beldarrain et al. 2023). Research shows that in co-creation systems, interaction 
between humans and AI enhances human engagement, leading to AI being perceived as a more reliable 
and intelligent partner (Rezwana and Maher 2022). In HAIC systems, interaction and communication 
with AI not only facilitate more effective task execution but also increase human engagement in the 
process (Jacobsen et al. 2020). In the context of ES, HAIC promotes human awareness of environmental 
issues and encourages active participation in environmental activities through AI-human interaction. 
For example, in citizen science, human take photos of species in different locations and upload them to 
platforms. AI then uses image recognition and data processing to map species migration corridors, 
which aids in planning protected areas. Through this process, human involvement increases their 
engagement in environmental conservation and raises environmental awareness (Chen et al. 2024). 

5 Discussion  

5.1 Implications of Findings 

As environmental issues continue to worsen, there is an increasing need for innovative solutions to 
promote ES. HAIC presents new opportunities for improving ES. However, no systematic research has 
yet analyzed how humans and AI collaborate to impact ES. Through a systematic literature review of 35 
articles, we found that HAIC for ES has gained significant attention since 2020, indicating a growing 
recognition of its potential in this area. Most studies empirically verify the effectiveness of HAIC in 
promoting ES. However, in certain contexts, some studies have proposed the challenges in evaluating 
performance. Additionally, we observed that most research focuses on the technical collaboration 
between humans and AI, with limited research exploring how humans and AI collaborate within 
organizational contexts to improve organizational ES. To address this, we identified 19 HAIC use cases 
in ES practices. By analyzing these use cases, such as, smart sustainable mobility, route planning, and 
species identification, we developed a comprehensive framework that facilitates a more holistic 
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sociotechnical understanding of HAIC for ES (see Figure 3). The use cases have demonstrated a range 
of positive impacts on ES, such as reducing energy consumption and improving resource efficiency, 
which highlights the significant potential of HAIC in promoting ES. As a result, we should recognize the 
potential of AI in addressing environmental issues and engage in more ES practices. Additionally, we 
found that there is still some promising topics within ES domains that remain unexplored, such as raw 
materials, repair, and pollutant treatment. For example, some researchers have developed AI algorithms 
that, through computer vision and object recognition, identify raw materials in Waste Electrical and 
Electronic Equipment (Cabri et al. 2022). Future research needs to explore how these AI technologies 
can collaborate with humans to improve ES. 

Lastly, through analyzing 19 HAIC use cases, we synthesized three main modes of augmentation to 
promote ES: decision support, interaction and adaptation, and engagement and communication. These 
three modes underpin successful HAIC for ES and provide insights for designing effective HAIC in the 
future. However, although we have identified these three main modes, their underlying mechanisms 
have not been thoroughly studied, which warrants further exploration in the future. 

 

Figure 3.  Framework for HAIC for ES 

 

5.2 Research Agenda 

Through the discussion of research findings, we identified the current state of research on HAIC for ES. 
Based on these findings, we have determined several key research questions to further the 
understanding and application of HAIC for ES.  

How can HAIC be effectively applied to ES's underexplored areas? 

While HAIC has shown promise in areas like smart grids and waste management, there remain 
significant gaps in topics such as raw materials management, repair optimization, and pollutant 
treatment. By combining human experience and ethical considerations with AI's capabilities, it is 
possible to significantly improve performance in these topics. Future research should explore HAIC use 
cases in these underdeveloped topics and improve existing use cases. 
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What are the mechanisms through which HAIC influences decision-making for ES? 

Decision support is a critical dimension of HAIC. However, there is a need for deeper exploration into 
how HAIC improves decision-making processes in complex and uncertain environmental contexts. 
Researchers should investigate the specific ways in which HAIC can enhance the quality, efficiency, and 
outcomes of decisions in various ES scenarios. 

How can HAIC systems be designed to foster better interaction and adaptation between 
humans and AI? 

Effective interaction and mutual adaptation are key to successful HAIC. Future studies should focus on 
designing HAIC systems that encourage dynamic feedback loops between humans and AI, enabling both 
parties to adjust and optimize their contributions in real-time. Research should also examine how these 
interactions impact trust, efficiency, and overall system performance. 

How can engagement and communication be improved in HAIC use cases to promote pro-
environmental behaviours? 

Engagement and communication are crucial for the success of HAIC in ES. Future research should 
explore strategies for enhancing human engagement with AI systems, particularly in ways that 
encourage sustainable behaviours. This could include investigating the role of personalized AI-driven 
recommendations and the impact of collaborative AI systems on public participation in environmental 
initiatives. 

How can organizations effectively integrate HAIC into their sustainability strategies? 

We found that nearly all HAIC use cases for ES are based on a technological perspective, focusing on the 
design of HAIC systems to achieve one or more environmental goals, such as improving resource 
efficiency and land use (see Table 1). However, current research lacks attention to the organizational 
level, which contrasts sharply with the academic focus on this topic. Future studies should examine how 
HAIC can be integrated into organizational sustainability strategies, considering factors such as 
leadership, culture, and the specific needs of different industries. Research should also investigate the 
impact of HAIC on organizational performance and its potential to drive systemic change. 

What framework can be developed to evaluate the effectiveness of HAIC for ES? 

We found that HAIC for ES still faces certain challenges in performance measurement. There is a need 
for a standardized framework to evaluate HAIC systems in the context of ES. Future research should 
aim to develop such a framework, allowing for consistent assessment of HAIC's impact across different 
environmental contexts and facilitating comparison of results across studies. 

6 Conclusion and limitations 

This study explores the impact of Human-AI Collaboration (HAIC) on Environmental Sustainability 
(ES) and its potential for driving meaningful change. Our comprehensive review highlights HAIC’s 
effectiveness in areas such as energy conservation, waste reduction, and biodiversity preservation. To 
further advance the field and address ongoing challenges, we propose a research agenda that 
underscores the need for further investigation, particularly at the organizational level. Future studies 
should explore how HAIC can be better integrated into organizational practices and policies, addressing 
the identified gaps and overcoming the obstacles currently limiting its impact on environmental 
sustainability. By doing so, the potential of HAIC to drive sustainable can be fully realized, contributing 
to a more resilient and sustainable future. 

Nevertheless, this study has several limitations. First, due to the relatively recent emergence of the term 
Human-AI Collaboration (HAIC), various synonymous terms exist within the field. This paper focused 
on terms like augmented intelligence, hybrid intelligence, and human-AI teaming and collaboration, but 
did not delve deeply into collaborations specifically involving deep learning and human intelligence. 
Second, because this study primarily concentrates on HAIC for Environmental Sustainability (ES), the 
impacts discussed are mainly indirect—HAIC practices influence processes, which in turn affect the 
environment—while direct impacts, such as those arising from the physical presence and processes of 
HAIC technologies, were not thoroughly explored. Future research should investigate these direct effects 
more comprehensively. Finally, although this paper examined HAIC's role in promoting ES, future 
studies should increasingly focus on strategies to enhance the environmental sustainability of HAIC 
itself. 
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