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Abstract—This paper examines the effectiveness of modern
universal gate quantum computers in solving the Boolean Satis-
fiability (B-SAT) problem using Grover’s Search algorithm. Ex-
periments were conducted with varying configurations, including
the number of shots, qubit mapping, and different quantum
processors, to assess their impact on the results. The study
also includes an experiment that highlights a unique behavior
observed in IBM quantum processors when running circuits with
a specific number of shots.

Index Terms—quantum computing, B-SAT, Boolean satisfia-
bility problem, Grover’s Search, electronic design automation
(EDA), conjunctive normal form (CNF), closed box testing

I. INTRODUCTION

The applications of quantum computing on electronic design
automation (EDA) is an increasingly growing field that is
gaining traction as quantum processors improve by the year
[1] [2]. Universal gate quantum processors are quite efficient
at performing tasks that could be parallelized, and closed-box
EDA testing has a lot of parallelization potential since it needs
to run all possible inputs to verify the function of the digital
logical unit. One way to auto-construct a closed-box digital
logic unit is to lay it out as a Boolean Satisfiability (B-SAT)
problem.

An early application of quantum computers is to solve the
Boolean Satisfiability problem using Grover’s Search algo-
rithm [3]. Grover’s search algorithm has long been hailed as
one of the flagship algorithms of quantum computing [4]. Its
ability to locate an item in an unstructured list has a complexity
of: O(

√
n). That being said, quantum computers are far from

proving quantum advantage. While we are still in the noisy
intermediate-scale quantum (NISQ) era, various approaches
from all angles are being leveraged to achieve the goal of
quantum advantage. The depth of quantum circuits is usually
used as an early indicator of how reliable the results will be.
However, as demonstrated by the experiments in this study,
you can still get both reliable results in quantum circuits with
high depth and unreliable results from quantum circuits with
shallower depth as well.

II. BACKGROUND

A. The Boolean SAT Problem

This study explores various configurations of B-SAT circuits
to identify those that yield optimal results. Our experiments

are particularly relevant for quantum computing applications,
especially those utilizing Grover’s search algorithm to solve
Boolean satisfiability problems or CNF-translated digital logic
circuits.

Key variables include the number of shots, qubit mapping,
and choice of quantum processor. In the CNF circuit, these
variables correspond to the number of AND, OR, and NOT
operators, focusing on logical rather than physical gates. A
typical Boolean satisfiability equation can be expressed as:

f (x1, x2 . . . xn) = (x1 ∨ ¬x2 ∨ x3 . . . ∨ xn)

∧ (¬x1 ∨ x2 ∨ x3 . . . ∨ xn)

∧ . . . (x1 ∨ ¬x2 ∨ x3 . . . ∨ xn) (1)

CNF equations consist of clauses (OR combinations of liter-
als) that are ANDed together. This structure offers flexibility,
allowing CNF to represent various scenarios. The Tseytin
transformation [8] optimizes CNF for converting combina-
tional logic circuits, with any circuit convertible to CNF using
De Morgan’s law. A CNF circuit typically has three stages,
illustrated in Figure 1: (1) input inversion (creation of literals,
blue box), (2) formation of clauses using OR gates (red box),
and (3) combining clause outputs with AND gates (purple
box). Assuming m clauses and n variables, the proportion
α = m/n is critical for solvability. Studies on the 3-SAT
problem [5] [6] indicate a sharp drop in the probability of
finding a solution beyond a critical point αc ≈ 4.267. We
ensured α remained below this threshold in all experiments.

B. Grover’s Search Algorithm

The 3-SAT problem has been at the forefront when it
comes to exemplifying the applications of Grover’s algorithm.
Grover’s algorithm is composed of three components:

1) Hadamard Initiation
2) Grover Oracle
3) Amplitude Amplification
Hadamard initiation is a common initialization stage that

is seen in many quantum algorithms, where all qubits are
flipped to superposition. This creates an equally weighted
superposition of all computational basis states, thus harnessing
one of the major perks of quantum computing. The next step



Fig. 1. Stages of a CNF circuit in digital logic form.

would be the Grover Oracle. The Grover oracle is a quantum
circuit component that flips the phase of a state that satisfies a
desired condition. In our experiment, the CNF equation would
be translated into a Grover oracle. The last part of Grover’s
search algorithm is the Amplitude Amplification stage. Unlike
the Grover oracle, the amplitude amplification phase is not
case- nor result-dependent, meaning that the quantum circuit
for the amplitude amplification remains identical for all cases
and is always: U = 2 |s⟩ ⟨s| − 1.

After the Hadamard initiation, the algorithm works by re-
peatedly applying a Grover oracle and amplitude amplification
for: ⌊

π

4

√
N

m

⌋
Where N is the number of entries on the list or 2n. n
is equal to the number of qubits representing the variables
in the Boolean Satisfiability formula. m is the number of
viable distinct solutions. Finally, the results would be recorded
by measuring all qubits. By exchanging the Grover Oracle
with the CNF circuit we would be constructing a Boolean
satisfiability solver. The layout would can be seen in Figure 2.

Fig. 2. In this example, the CNF circuit would be: f(x1, x2) = x1 ∧ x2.
It should be noted that this example has only 1 distinct solution.

C. Circuit Depth

Quantum circuit depth measures the longest path from
input to output, reflecting computational complexity and ef-
ficiency. Deeper circuits indicate more complex computations
and increase susceptibility to errors due to prolonged qubit
interactions. Parallel qubit operations do not add to the circuit
depth. Minimizing circuit depth is crucial for reducing error

accumulation and enhancing computation speed, which is vital
given the fragility of quantum states. However, reducing depth
may require more qubits or gates, complicating the trade-
off between depth, gate complexity, and error correction in
quantum algorithm design.

D. Shot Statistics

This section discusses the concept of ’shots’ in classical and
quantum computing contexts. In quantum computing, shots
refer to the number of times a quantum circuit is executed
or measured, playing a crucial role in analyzing outcomes
and statistics. When a qubit is measured, it probabilistically
collapses into a 0 or a 1, meaning that repeated executions
of the same quantum circuit can yield different results due to
quantum uncertainty. By running a circuit multiple times, re-
searchers can gather statistical data from these measurements,
with each execution representing one ’shot.’

The average mean of a classical operation outcome can be
denoted by:

E[X] =
∑
x∈0,1

xPr[X = x] (2)

Where E[X] is the expectation value of the quantum circuit
while x is meant to represent the classical measurement
outcome that would be multiplied by the probability of it
happening: Pr[x]. This can be further reduced to Pr[X = 1]
and result in it being just p, which is just the probability of
measuring 1. When translated into quantum computing terms,
the average mean formula would look something like this:

E[X] =
∑

x∈0,1 x⟨µ̂(x)⟩
= ⟨

∑
x∈0,1 xµ̂(x)⟩

= ⟨M̂⟩
(3)

µ̂ is an observable. An observable is a measurable property
of a circuit, where it could be a vector or a combination of
different vector outcomes. Since the expectation value is a
linear function, the constant x could be moved to the inside
of the µ̂ bracket(as seen in equation 3). This would equal
the quantum expectation value of the quantum observable,
as demonstrated in line 3 of equation 3. This M̂ value is
equal to the projector for the |1⟩ vector, which symbolizes the
probability of measuring a 1.

The variance of a classical random variable(denoted by V),
which describes the deviation around the mean, looks like the
following equation:

V[X] = E[(X − E[X2])2]
= E[X2]− E[X]2

(4)

This formula is shared by both the quantum and classical
aspects, but what they differ in is the way that the expectation
value squared(E[X2]) is reached. The difference is demon-
strated in Table I. At the end of the quantum path, we
can see that the expectation value squared is equal to the
observable operator matrix squared. By combining both sides
of the variance equation, we can induct that:



TABLE I
AN OUTLINE OF THE CLASSICAL AND QUANTUM EXPECTATION VALUE

SQUARED

Classical E[X2] Quantum E[X2]

E[X2] =
∑

x∈0,1 x
2Pr[X = x]

= 0Pr[X = 0] + 1Pr[X = 1]

= p

E[X2] =
∑

x∈0,1 x
2Pr[X = x]

=
∑

x∈0,1 x
2⟨µ̂(x)⟩

= ⟨
∑

x∈0,1 x
2µ̂(x)⟩

= ⟨M̂2⟩

V[X] = ⟨M̂2⟩ − ⟨M̂⟩2
= p− p2

= p(1− p)
(5)

The chi-square, denoted by χ2, is a statistical parameter
that measures how close model data is when compared to
observed data. It is formulated in the following equation:

χ2
c =

(Oi − Ei)
2

Ei
(6)

Where O represents the observed values, Ei represents the
expected values, and c denotes the degrees of freedom. The
larger the disparity between the observed and model values,
the larger the χ2 value is. In other words, the smaller χ2 is
the better the model/experiment appears to be. More detailed
information can be found regarding this subsection at [9].

Number of Shots: A single measurement(shot) of a quan-
tum circuit has a probability of measuring a particular observ-
able x would be written as:

Pr[X = x] = ⟨µ̂(x)⟩ (7)

The average over all the random outcomes measured would
be denoted as S and formulated in the following way:

S =
1

M

M∑
m=1

Xm (8)

Where the first outcome is X1 and the last measurement
outcome is XM . The number of shots measured here is M .
Equation 5 is applicable in the context of the number of shots
and by combining it with equation 4, we can induct that:

E[Xm] = E[X] = p ∀m ∈ {1, ...,M} (9)

As stated earlier, the expectation value is linear functional
and is even utilized in equation 4. This property can be also
used to derive the distributed expectation value, as seen in the
following equation:

E[aXm + bXn] = aE[Xm] + bE[Xn] ∀m,n a, b ∈ C
(10)

Again, when using equation 4 to come up with the variance
of a distributed random variable system(such as the quantum
uncertainty), we can infer that the variance would be equal to:

V[aXm+bXn] = a2E[Xm]+b2E[Xn] ∀m,n a, b ∈ C
(11)

Following on from equation 9 and combining it with
equation 8, we can assume that the variance of the mean
for quantum systems can be laid out in the following way,
given M number of shots taken into account:

V[S] = V[ 1
M

∑M
m=1 Xm]

= 1
M2

∑M
m=1 V[X]

= 1
MV[X]

= p(1−p)
M

(12)

This would indicate that in an ideal quantum computing
system; The more measurements or shots, the smaller the
standard deviation and variance becomes. In other words, you
can suppress quantum projection noise with enough shots. This
could be demonstrated in Figure 3.

Fig. 3. Variance of Random Classical Variable Vs. Probability to Measure
1. The probability of yielding outlier mean measurements decreases as the
number of shots is increased. This should be an indicator that the variance
should decrease as the number of shots is increased.

III. METHODOLOGY

A. B-SAT Experiment

The experiment begins by constructing a dimacs file in CNF.
A dimacs file is a text file that is used to describe a Boolean
satisfiability problem in various forms. The dimacs file is
parameterized by the number of variables, AND gate logical
operators, OR gate logical operators, and then a proportion
of literals randomly get a NOT gate applied to them. In the
context of our study, the number of AND and OR gates would
translate into literals and clauses in the following way:

#ANDs = #Clauses− 1 (13)

#ORs =
∑

clause

(#Literals− 1) (14)



TABLE II
A SAMPLE OF THE EXECUTED CIRCUITS IN TERMS OF PARAMETERS

n=3 B-SAT

3 AND gates

6 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

7 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

8 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

4 AND gates

8 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

9 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

10 OR gates
30% NOT gate application
50% NOT gate application
70% NOT gate application

The CNF equation was checked for duplicates, restarting
the random allocation of NOT gates if any were found. After
100 attempts, duplicates were allowed. B-SAT problems are
classified by the number of variables/qubits, n, used in the
quantum circuit. The pattern used by the DIMACS CNF
constructor is shown in Table II, with the number of DIMACS
files per configuration listed in Table III.

TABLE III
NUMBER OF DIMACS FILES GENERATED PER CONFIGURATION

SAT Configuration Number of dimacs Files Generated
n=3 64 files
n=4 325 files
n=5 709 files
n=6 880 files

The dimacs file is then translated into a quantum circuit
with the intended adjustments made. The constructed circuit is
then sent to IBM’s quantum processors to be run according to
the specified number of shots. The whole experiment is coded
in Python and Qiskit, IBM’s quantum computing library. The
stages of this experiment are visually summarized in Figure 4.

Fig. 4. A brief summarization of the experimental procedure

The quantum circuits representing the Boolean SAT digital
logic are run on three of IBM’s quantum processors: Quito,
Lagos, and Toronto. The processor specifications are listed in
Table IV. Each circuit is executed 10 times(with the specified
number of shots) and at the end of each execution, the result
with the highest occurrence is tested on the actual equation to
determine whether it is a valid solution or not.

Qubit mapping was performed using a library called “Mapo-
matic” [7]. Mapomatic is a library of qubit mapping functions

that was developed by a group of researchers at IBM Quantum.
It should be noted that the qubit mapping algorithm is not
deterministic, meaning that the mapping procedure would
sometimes yield slightly different mapping layouts. That being
said, the difference is very slight and rarely exceeds 10 in
quantum circuit depth. All quantum circuits are transpiled
with optimization level = 3 this would automatically apply
a heavy circuit mapping optimization pass, hence a mapped
circuit would have a double layer of qubit mapping passes
applied.

TABLE IV
QUANTUM PROCESSOR SPECIFICATIONS

Processor Qubits QV Median Readout ERR Median CNOT ERR
Quito 5 16 4.250e-2 1.012e-2
Lagos 7 32 1.667e-2 7.135e-3

Toronto 27 32 1.910e-2 1.009e-2
∗The error rates listed were taken according to the calibrations taken on the 7th of April 2023

B. Shots Experiment

This experiment is a branch-out experiment motivated by
the unexpected results observed in the experiment described
in section III-A. Our experiment begins by recording the
Error Per Clifford(EPC) data of a single physical qubit, in
one of IBM’s superconducting quantum processors, by using
Qiskit’s Standard Randomized Benchmarking library functions
[10]. After performing these single qubit experiments, a bundle
of quantum circuits would be constructed, using the same
library, that would range from a certain quantum circuit depth
to another. Each of the 1-qubit data collection experiments
has to be performed within a relatively short time window
before each multi-qubit standardized random benchmarking
experiment, otherwise a large disparity would be noticed. The
1-qubit data is used as the expected values Ei in equation 6.

Given a specified seed value, the randomized circuits would
always generate the same “random” standard benchmarking
circuit. The depth of each Clifford is gradually increased in
the bundled multi-qubit experiments, resulting in a range of
circuits rather than just a single circuit depth. This variation
in Clifford gate length is required by Qiskit’s standard ran-
domized benchmarking functions to analyze the EPC’s spread
by calculating the variance, while also mapping the divergent
behavior that would be demonstrated in the reduced chi-
squared of the EPC behavior. These same experiments have
been performed with different amounts of qubits in a circuit,
which did affect the produced random circuit depth. The main
variable in our experiments that the whole experiment was
built around is the number of shots performed in each multi-
qubit benchmarking execution. A summary of the experimental
procedure can be seen in Figure 5.

This experiment’s main objective is to examine the effect
that the number of shots would have concerning the number
of qubits under a circuit depth that would not likely result
in random noise(49-156) from the effects of having a higher
variance effect(as demonstrated in Figure 3). The time of each



experiment after quantum processor calibration was recorded
but not included in the results due to its irrelevance to the
analysis.

Fig. 5. This is a figure that summarizes our experimental procedure. The
black arrows are to be repeated 3 times per cycle, while the olive-colored
lines are performed once per cycle.

IV. RESULTS

A. B-SAT Experiment

1) Three Qubits(n=3): Our first experiment in this subsec-
tion runs two configurations of the three variable/qubit B-
SAT problem. All circuits are set to n=3, meaning that the
number of variables in the circuit is 3. All of the circuits
were run with and without reapplying qubit mapping. Both
executions have been set to 1024 shots per circuit execution.
The results can be seen in Figure 6. The “Success Score”
marking the Y-axis indicates how well the top result of the 10
quantum computer executions faired; 0 means that none of the
top measurements in the quantum circuit runs yielded correct
answers and 1 means that all of the top measurements yielded
correct answers. Due to the very simple nature of the circuit,
the results are mostly perfect with few dips in fidelity. It is
also noticeable that the qubit mapping optimization seems to
aggravate the drop in the success score.

Fig. 6. The n=3 SAT results on Quito gave us almost perfect answers with
few outliers here and there

There was one unexpected trend that came out of the n=3
SAT experiments. The circuit depth of the unmapped quantum
circuits yielded better results as the depth goes above the 30s.
This could be due to coherent errors, as they have a similar
pattern of oscillating in magnitude as more operations are
applied to a qubit. Generally, circuit depth is seen as something
that should be minimized as much as possible, but in this case,
it has shown to be a positive marker seen in Figure 7. Qubit
mapping in the n=3 SAT circuit did not improve the results
as can be seen in Figure 8. Qubit mapping also resulted in
higher average circuit depth.

Fig. 7. Circuit depth seems tied to more positive results with the unmapped
n=3 B-SAT.

Fig. 8. Qubit mapping did not improve the n=3 SAT results by much.

Fig. 9. Increasing n to 4 shows a noticeable decline in the success score,
but some improvement with qubit mapping and increased shot count per
execution.

Fig. 10. Doubling the shot count and using qubit mapping resulted in an
aggravated Success Score on Lagos.



2) Four Qubits(n=4): This subsection explores the impact
of qubit mapping and varying shot counts on quantum circuits
with four variables, as well as a comparison between the
Quito and Lagos quantum processors. Upon increasing the
variables to n = 4, a significant drop in fidelity is observed
(Figure 9) compared to n = 3 (Figure 6). Applying qubit
mapping and doubling the shot count to 2048 improved results,
especially with more AND gates. Interestingly, the Lagos
processor, despite having more qubits and lower error rates
(Table IV), yielded a lower ”Success Score” compared to
Quito. Qubit mapping and increased shots enhanced results on
Quito (Figure 9), but not as effectively on Lagos (Figure 10).
On Lagos, doubling the shots without qubit mapping resulted
in worse outcomes, with an increase in zero scores.

Circuit depth analysis on Quito revealed a negative impact
on fidelity for the n=4 SAT circuits, with deeper circuits
yielding poorer results (Figure 11). In contrast, Lagos showed
no significant depth-related trends, except for a slight increase
in correctness at higher depths, possibly due to an increase in
OR gates (Figure 12).

Fig. 11. The dotted blue line indicates a polynomial aggregation of the
experimental results on Quito.

Fig. 12. No noticeable pattern in depth aspect for the n=4 SAT runs on Lagos.

3) Five Qubits(n=5): The number of shots here has been
adjusted to 4096 in all executions. As seen in Figure 13,
both cases had a success rate that resembles the probability
of random chances of success. However, we were surprised to
find a particular trend when analyzing the success score against
the quantum circuit depth. Figure 14 is a polynomial of order
6 aggregate line of the standard n=5 SAT Quito experiments.
Quantum circuits with a depth over 1000 have shown to have
a score approaching 0.9. The effect is also applicable to lower

polynomial aggregation lines that are. This prompted us to
cross-examine it with the random chance of success in the
“Further Analysis” subsection.

We performed n=5 experiments on another quantum pro-
cessor, Kolkata, using IBM’s updated runtime library. Un-
fortunately, the results resembled as well. The experiments
were repeated while setting the resilience level to 1, which
did raise the chances of success by only 4-5%. To verify our
modus operandi, we also ran some of the lower depth n=5
circuit experiments on IBM’s mock quantum processor “Fake
Kolkata”, which gave us almost perfect results(these mock
processors have some simulated noise applied to them).

Fig. 13. Both Quito and Lagos seem to have produced similar results, which
would be interpreted as noise when factoring in the random chance of success

Fig. 14. In this case, the n=5 SAT experiments indicate that high circuit
depth is caused by a higher number of OR gates, which results in a higher
probability of random success

4) Six Qubits(n=6): For the n=6 SAT problem, we used
IBM’s Toronto quantum processor to examine if it would
keep up with the increasing amounts of qubits required. The
number of AND gates in these quantum circuit runs had no
clear pattern (as seen in Figure 15), other than they were
approximately on level with the random noise success rate:
46%(more details in the “Further Analysis” section). The
number of shots ran on Toronto was adjusted to 8192 to
compensate for the increased size of the state vector. No
comparison experiment was executed other than the standard
one for the n=6 SAT.



Fig. 15. As the number of AND gates increases, the results drop to just noise
level integrity

5) Further Analysis: This subsection will discuss points
that have not been brought up in the previous subsections and
the possible reasoning behind the results. The vast majority
of CNF equations have more than 1 valid solution, and this
section aims to examine this span of valid/satisfiable answers.
According to the n=5 SAT and n=6 SAT circuits that have been
generated for this study, this span is very predictable. As seen
in Figure 16. The ratio of OR:AND gates is what decides how
big the span of satisfiable solutions is. As the number of AND
gates increases, the ratio gets lower thus pulling the success
score down. This effect can be slightly seen in the n=5 SAT
executions on Quito (Figure 13). The effect is also noticeable
even on the n=4 Lagos graph in Figure 10), but not the n=4
Quito graph in Figure 9.

Fig. 16. The ratio of OR:AND gates is what decides how big the span of
satisfiable solutions

When comparing the general experimental results with the
probabilistic rates (Table V), the picture becomes clearer.
modern-day quantum computers could handle n=3 SAT and
n=4 SAT problems adequately enough, but when raising n
to 5 and above, they start to yield random noise results.
The n=4 SAT results were only significantly higher than the
probabilistic trend in the case of the Quito (mapped+x2 shots).
The rest of the n=4 SAT implementations were close to the
probabilistic stats in terms of average, median, and correlation.
Trying to solve the problem on a larger quantum processor
such as Lagos or Toronto did not give us better results, even

though their median gate and readout error rates (see Table IV)
were less than the smaller Quito processor.

TABLE V
STATISTICAL COMPARISON BETWEEN THE EXPERIMENTAL RESULTS VS.

PROBABILISTIC CHANCE OF RANDOM SUCCESS

Quantum Processor Probablistic
n=3 SAT on Quito n=3 SAT

Average: 93% Average: 39%
Median: 100% Median: 43%
n=3 SAT Correlation: -0.5311

n=4 SAT on Quito (Mapped+x2 Shots) n=4 SAT
Average: 73% Average: 42%
Median: 80% Median: 40%
n=4 SAT Correlation: -0.4132

n=5 SAT on Quito (1 Iteration) n=5 SAT
Average: 50% Average: 46%
Median: 50% Median: 48%
n=5 SAT Correlation: 0.4852

n=6 SAT on Toronto n=6 SAT
Average: 44% Average: 44%
Median: 40% Median: 45%
n=6 SAT Correlation: 0.6176

Moreover, the correlations are quite clear (see Table V)
regarding how much the results are affected by the random
probability’s safety umbrella. It should be noted that circuits
with more OR gates resulted in larger quantum circuit depth,
while the number of AND gates did not have a noticeable
effect on the depth. The proportion of NOT gates in the circuits
did not have any significant effect on the results, hence not
mentioned in the previous subsections.

We have no conclusive evidence to explain the cause of
the larger variance in the n=4 circuits, especially in Lagos,
and this has led us to email IBM Quantum regarding this
matter. They explained that the cause of this behavior is due
to a miscommunication on whether more shots are coming
and that this behavior is both hardware and firmware version
specific. We were also assured by IBM Quantum that the
issue should be patched soon in the next backend upgrade.
For more information regarding the effect that the number
of shots imposes, please refer to the results of the shots
experiment(subsection IV-B).

B. Shots Experiment

The results proved what we suspected from the B-SAT
experiment, which is that the number of shots did affect
the results in unusual ways. To be precise, the variance and
fidelity did not peak at the lowest number of shots. As seen in
Figure 18, the χ2 on the Kolkata quantum processor shows a
predictable pattern by peaking at particular numbers of shots as
the number of qubits increased. When the number of qubits is
5, the χ2 peaks at 2000 shots, and when the number of qubits is
increased to 6, the χ2 peaks at 4000 shots. The pattern persists
with the 7-qubit circuits where the χ2 peaks at 6000 shots. The
8-qubit circuit verified the previous pattern by the χ2 showing
a spike in χ2 at the 8000 shot mark. It also showed signs of
obeying the conceptual rules demonstrated in subsection II-D
by having a higher variance when the number of shots is set
to the lowest setting in our experiments.



Kolkata also showed these spikes in variance, but they
peaked in different number of shots than the χ2 as seen in
Figure 18. The spike in variance seems to be set at 6000
shots when the number of qubits in the circuits is 7 and 8.
Otherwise, the spike in variance followed the χ2 pattern when
the number of qubits is 5. The other quantum processor, Cairo,
displayed a similar spike in variance and χ2 that repeats in
the same number of shots and qubits(as seen in figure 17).
This would lead us to speculate that this occurrence is not
tied to a single quantum processor.The spike also appears on
the Hanoi quantum processor at 4000 shots, rather than 2000,
when running the 5-qubit circuit (Figure 17).

Fig. 17. The number of shots across 3 quantum processors yields unexpected
results deviating from the mathematical model. Fidelity(measured by χ2)
drops are also oddly linked to the number of qubits (left).

Fig. 18. Experiments on Kolkata show a predictable fidelity loss spike shifting
left with each qubit increment (left). Variance spikes occur at 8000 and 6000
shots on 5+ qubit circuits (right).

V. CONCLUSION

After performing numerous experiments, we have reached
several key points:

• Quantum volume and declared error rates of a quantum
processor were not indicators of how well it performed
in our B-SAT experiments. Quito, the quantum processor
with fewer qubits, lower quantum volume, higher median
readout and CNOT error rate than Lagos, yielded notice-
ably better results in the n=4 case.

• Increasing the number of shots did not result in a lower
result variance, as it increased the variance in a certain
higher number of shots. According to IBM, the cause of
this issue is the firmware on their quantum processor. This
hardware-firmware issue has affected numerous quantum
experiments, not just our B-SAT experiment.

• The extra layer of qubit mapping almost always resulted
in improved average results.

• A bigger circuit depth does not always imply worse
results (at least not for an SAT circuit), as it sometimes
gives us better results even when taking the random
chance of success into account.

• The quantum processors experimented on performed ad-
equately on the n=3 and n=4 SAT circuits, but the results
declined to noise level for the n=5 SAT and n=6 SAT.
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