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Abstract

In this chapter, we introduce Hopfield-type neural networks based on the ceiling

neuron model. Inspired by the binary Hopfield neural network and by the defi-

nition of ceiling neuron, we propose an extension of the Hopfield neural network

from a binary set of possible states of a real-valued neuron to a multistate set. We

investigate the dynamics of the proposed model in asynchronous and synchronous

update modes. Computational experiments illustrate that the Hopfield neural net-

work based on the ceiling neuron in an asynchronous update mode always settles

down to a stationary state under the usual conditions on synaptic weights, that is,

the synaptic weight matrix is symmetric with non-negative diagonal elements. In

turn, the Hopfield neural network with ceiling neurons in the synchronous update

mode can generate sequences with limit cycles, similar to the classic Hopfield neu-

ral network.
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1 Introduction

The Hopfield neural network (HNN) is one of the most important recurrent neural

networks introduced in the literature. It was conceived by the American physicist

W. A. Little in 1974 [22], and was popularized by the American physicist, biologist,

and neurologist John Joseph Hopfield, in 1982 [13]. Hopfield investigated content-

addressable memories aimed to store and recall binary vectors using the Hebbian

rule [11, 13]. Besides implementing content-addressable memories, HNNs have

been applied in control [8, 29], classification [26, 35], computer vision and image

processing [21, 34], and optimization [12, 20, 28].

Due to the limited representational capability of McCulloch-Pitts neurons, ex-

tensions of HNNs have been proposed aimed to process information of different

natures, especially information involving multidimensional data. In this sense, re-

searchers have proposed, for example, complex-valued Hopfield neural networks,

which allow to process 2-dimensional data as single entities using complex-valued

neurons [1, 2, 6, 9, 17, 24, 25, 30]. Furthermore, to process other kinds of mul-

tidimensional data as single entities, researchers have extended the HNNs from

the field of real numbers to hypercomplex fields. Examples include quaternion-

valued HNNs [15, 16, 31, 32, 33], octonion-valued HNNs [5, 18, 19], and other

hypercomplex-valued HNNs based on Cayley-Dickson or Clifford algebras, for

instance [7].

Nevertheless, in this chapter we focus on another alternative, internally to the

field of real numbers, to introduce a kind of neuron allowing to capture information

of a multidimensional nature. The so-called ceiling neuron, introduced in [10],

acts to increase the cardinality of the set of possible states of a real-valued neuron

through the introduction of a finite set of thresholds to each neuron of an HNN. As

we will see, this approach allows associating a multistate set of cardinality equal to

K + 1 to each real-valued neuron of an HNN, where K is a positive integer called

resolution factor.

This chapter is organized as follows: Section 2 introduces the ceiling neuron

model and highlights its main operational differences compared to the the clas-

sic McCulloch-Pitts neuron model. Sections 3 and 4 discutes aspects inherent to
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HNNs based on ceiling neurons and McCulloch-Pitts neurons, with emphasis on

their dynamics. In order to illustrate the dynamics of HNNs, Section 5 presents

some computational experiments. We finish the chapter with some concluding re-

marks at Section 6.

2 The McCulloch-Pitts and the Ceiling Neuron Models

The first computational model of a neuron was proposed by the neuroscientist War-

ren McCulloch and the logician Walter Pitts in 1943 [23]. Let us review this model.

Consider a neuron called neuron i. Let real numbers x1, x2, . . . , xN be the in-

puts of the neuron i, which, from a biological point of view, represent excitatory

or inhibitory postsynaptic potentials at neural dendrites 1, 2, . . . , N . Associated

with each of them we consider the real-valued synaptic weights wi1, wi2, . . . , wiN ,

respectively, which represent the intensities of the postsynaptic potentials at den-

drites. The weighted sum x1wi1 + x2wi2 + . . .+ xNwiN is called action potential

of the neuron i, and is denoted in this chapter by vi. Formally, we write

vi =
N∑

j=1

wijxj . (1)

The McCulloch–Pitts neuron allows binary activations, i.e., it either “fires”

with an activation equal to 1 or “does not fire” with an activation equal to 0. Specif-

ically, if the action potential vi is greater than a fixed threshold real value θi, the

neuron i “fires”. Otherwise, the neuron i “does not fire”. This thresholding pro-

cess can be mathematically represented by using the Heaviside-type step function

h : R→ {0, 1} defined by

h(x) =

{
1, x > 0

0, otherwise
. (2)

We obtain the output yi ∈ {0, 1} of the neuron i by means of the equation

yi = h(vi − θi). (3)

Figure 1 illustrates the the operating mode of a McCulloch-Pitts neuron.
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Figure 1: The McCulloch-Pitts neuron model.

Let us present the ceiling neuron [10]. Unlike McCulloch-Pitts neuron model,

in the ceiling neuron model each neuron i has a set {θ1i, θ2i, . . . , θKi} of K dis-

tinct real-valued thresholds associated with it. Consequently, the set of possible

values of a neuron is expanded from the binary set {0, 1} to the multistate set

S = {0, 1, . . . ,K}, where K ≥ 1 is some positive integer. In the context of

this chapter, the number K will be called resolution factor, due to its structural

conformity with the resolution factors commonly used in complex-valued HNNs

[1, 6, 9, 17, 24, 30].

Similar to the McCulloch-Pitts neuron model, consider a neuron i with real-

valued inputs x1, x2, . . . , xN , and the real-valued weights wi1, wi2, . . . , wiN , re-

spectively. Besides, let us define the set of the real-valued thresholds associated

with the neuron i by {θ1i, θ2i, . . . , θKi}, with θµi 6= θηi for all µ 6= η.

The output yi of the ceiling neuron i is obtained as follows. For each threshold

θji, with j = 1, . . . ,K, we apply the Heaviside-type step function given by (2) on

the difference vi − θji, and add all the results obtained. Formally, the output of the

ceiling neuron i is given by equation

yi =

K∑

j=1

h(vi − θji), (4)

where vi is the action potential of the neuron i given by (6). It is easy to see that

yi ∈ S = {0, 1, . . . ,K}.
Figure 2 illustrates the operating mode of a ceiling neuron.
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Figure 2: The ceiling neuron model.

From a practical point of view, the output yi of a ceiling neuron can be inter-

preted as the number of thresholds lower than the action potential vi. In this sense,

it is important to note that a single ceiling neuron divides the space of the values of

a neuron into K + 1 subspaces of decision. In contrast, to mimic this same action,

K neurons of McCulloch-Pitts would be needed.

HNNs based on ceiling neurons can be applied in reconstruction of grayscale or

color images, image filtering, multiclass classification, semantic segmentation, or

optimization, for instance, in a different way compared to a classic HNN approach,

or a hypercomplex-valued HNN approach.

3 Binary Hopfield Neural Networks

The binary HNN is one of the most important recurrent neural networks from

the literature. It is composed by a totally connected single-layer with neurons of

McCulloch-Pitts [13]. Consider a HNN withN neurons, let wij be the jth synaptic

weight of the ith neuron, and let θi be the threshold of the ith neuron. The state of

the ith neuron at time t is denoted by xi(t) ∈ {0, 1}, for i = 1, . . . , N . The output

xi(t+ 1) of the vector x(t+ 1) can be obtained according to the equation

xi(t+ 1) =

{
h(vi(t)− θi), vi(t)− θi 6= 0

xi(t), otherwise,
(5)
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where

vi(t) =

N∑

j=1

wijxj(t) (6)

is the action potential of ith neuron at time t, and h : R→ {0, 1} is the Heaviside-

type step function given by (2).

Note that Heaviside-type step function h : R→ {0, 1} given by (2) is intrinsi-

cally related to the classic real sign function sgn : R → {−1, 1} by means of the

invertible equation

sgn(x) = 2h(x)− 1. (7)

Equation (7) provides an easy way to convert an HNN with neuron values in

{0, 1} (binary) to other HNN with values in {−1, 1} (bipolar), and vice versa. It is

important to note that the dynamics of an HNN is invariant for this conversion.

The neurons of an HNN can be updated asynchronously or synchronously. If

the neurons are updated asynchronously, that is, a single neuron is updated at time

t, HNNs always settles at an equilibrium state if the synaptic weight satisfies the

usual conditions wij = wji and wii ≥ 0, that is, the synaptic weight matrix is

symmetric with non-negative diagonal elements, for all i, j = 1, . . . , N , [4, 14].

This means that the sequences {x(t)}t≥0 generated by the HNN are always con-

vergent, given any initial state x(0) ∈ {0, 1}N . In an asynchronous update mode,

the neurons can be updated randomly, or a pre-defined order can be imposed on the

updates. In the computational experiments, we chose the following update order:

first update the first neuron, then the second neuron, and so on.

In turn, in the synchronous update mode all neurons of the HNN are updated

at the same time t. Some researchers see this mode of updating as less plausible

from a biological point of view [27]. They base their assertions on the absence of

scientific evidence about the existence of a global clock that influences or deter-

mines natural neural networks. Regardless of the biological plausibility, this mode

of operation of an HNN occurs mathematically as follows.

Consider an HNN with N neurons, let W be a matrix such that wij be denotes

the jth synaptic weight of the ith neuron, and θ a N -dimensional column vector

with ith component θi equal to the threshold of the ith neuron. The vector x(t+1)
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is obtained from W, θ, and x(t) according to the equation

xi(t+ 1) =

{
h ((Wx(t))i − θi) , (Wx(t))i − θi 6= 0

xi(t), otherwise,
(8)

where h is the Heaviside function given by (2).

By using the synchronous update mode, and imposing the same conditions on

W, HNNs can produce limit cycles of length 2, that is, periodic sequences of period

2 can be generated by the equation (8). Further details on the dynamics of an HNN

using synchronous update can be found in [3].

Remark 1 It is important to highlight the difference between the equations (5) and

(8). In equation (5), only the action potential of the ith neuron of x(t) is calculated

at each time t by using the inner product between the ith row of W and the vector

x(t). Then, the activation function h together with the threshold θi are used to

update the vector x(t). The values of i and t are incremented, and the the process

is repeated until some stopping criteria is satisfied. In turn, in the equation (8)

all action potentials of the neurons 1, 2, . . . , N are calculated at the same time t

using the usual matrix product between W and x(t). Then, the activation function

h together with the components of the vector θ are used to update all neurons.

After, the value of t is incremented, and the process is repeated until some stopping

criteria is satisfied. Also note that, in general, (Wx(t))i 6= vi(t).

4 Real-Valued Hopfield Neural Networks based on Ceil-
ing Neurons

In this section, we present an extension of the HNN model replacing the McCulloch-

Pitts neuron with the ceiling neuron. Consider a HNN with N neurons, and let W

be the N ×N matrix where wij denotes the jth synaptic weight of the ith neuron.

Let us define the matrix with all thresholds of the HNN by Θ ∈ RK×N . Specif-

ically, the ith column of Θ contains the K distinct thresholds θ1i, θ2i, . . . , θKi of

the ith neuron, where i ∈ {1, 2, . . . , N}. The state of the ith neuron at time t is

denoted by xi(t) ∈ S = {0, 1, . . . ,K}.
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In an asynchronous update mode, each ceiling neuron i of the vector x(t + 1)

is obtained according to the equation

xi(t+ 1) =





K∑

j=1

h(vi − θji), vi(t)− θji 6= 0 , ∀ j ∈ {1, 2, . . . ,K}

xi(t), otherwise,

(9)

where vi(t) is given by (6), and h is the Heaviside-type step function given by (2).

Now, consider the HNN with N ceiling neurons in the synchronous update

mode. Let W ∈ RN×N be a matrix of synaptic weights, and Θ ∈ RK×N the

matrix of thresholds of the HNN. In this case, the vector x(t+ 1) is obtained from

W, Θ, and x(t) according to the equation

xi(t+ 1) =





K∑

j=1

h((Wx(t))i − θji), (Wx(t))i − θji 6= 0 , ∀ j ∈ {1, . . . ,K}

xi(t), otherwise,
(10)

where h is the Heaviside-type step function given by (2).

Remark 2 Broadly speaking, the practical difference between the HNN with ceil-

ing neurons given by the equation (9), and the HNN given by (10) resides in the way

in which the action potentials are obtained, accordingly to the remark 1, similarly

to the classic HNNs.

Theorem 1 presents sufficient conditions for an HNN with ceiling neurons al-

ways settles down at a stationary state.

Theorem 1 Consider an HNN withN ceiling neurons and a resolution factorK ≥
1. Let Θ ∈ RK×N be the matrix of thresholds of the HNN, and S = {0, 1, . . . ,K}
the set of all possible values for a ceiling neuron. If the synaptic weights satisfy the

conditions wji = wij , and wii ≥ 0 for all i, j ∈ {1, . . . , N}, then the sequences

{x(t)}t≥0 generated by the evolution equation (9) are always convergent given any

initial state x(0) ∈ SN .
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Remark 3 Theorem 1 is true for K = 1 [12]. In this case, an HNN based on N

ceiling neurons is equivalent, apart from an isomorphism, to an HNN based on the

N McCulloch-Pitts neurons. The proof of the theorem follows, for example, from

the introduction of the Lyapunov functional E : {0, 1}N → R given by E(x(t)) =

−1
2x(t)TWx(t) + Θx(t) for the HNN [12].

To prove Theorem 1 there is no need to build explicitly a Lyapunov functional

for the HNN. Just note that the each vector x(t) ∈ S = {0, 1, . . . ,K}N can be

decomposed as a sum of vectors in {0, 1}N . Precisely, let M = max{x(t)} ≤ K

be the maximum value between all components of the vector x(t). Note that there

exists a sequence of vectors zµ ∈ {0, 1}N such that
M∑

µ=1

zµ = x(t). Then, since

HNNs with resolution factor K = 1 satisfy Theorem 1, HNNs with arbitrary K

also satisfy. In other words, any vector obtained as an output from an HNN with

K > 1 thresholds can be decomposed as the sum of a certain amount of vectors

obtained as outputs from an HNN with K = 1 threshold.

Remark 4 If the synaptic weights satisfy the conditions wji = wij and wii ≥ 0

for all i, j ∈ {1, . . . , N}, then the sequences {x(t)}t≥0 generated by the evolution

equation (10) are not always convergent given any initial state x(0) ∈ SN .

The experiments from Section 5 illustrate what has been addressed so far.

5 Computational Experiments

Experiment 1 The objective of this experiment is to compare, under Theorem 1

conditions, the dynamics of the asynchronous and synchronous HNN models with

celing neurons.

For this, consider the symmetric synaptic weights matrix W =




0 3 −2
3 0 −4
−2 −4 0


,

the thresholds matrix Θ =

[
0.5 0.1 0.1
0.3 0.2 0.9

]
, and the initial state x(0) =



0
1
1


 for

the HNN.
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1a) In an asynchronous update, that is, by using the evolution equation (8), we

obtain the following dynamics for the HNN.

First iteration:

v1(0) = 0 · 0 + 3 · 1 + (−2) · 1 = 1.

Then, x1(1) = h(1− 0.5) + h(1− 0.3) = 1 + 1 = 2. Thus,

x(1) =



2
1
1


 .

Second iteration:

v2(1) = 3 · 2 + 0 · 1− 4 · 1 = 2.

Then, x2(2) = h(2− 0.1) + h(2− 0.2) = 1 + 1 = 2. Consequently,

x(2) =



2
2
1


 .

Third iteration:

v3(2) = −2 · 2− 4 · 2 + 0 · 1 = −12.

Then, x3(3) = h(−12− 0.1) + h(−12− 0.9) = 0 + 0 = 0. Thus,

x(3) =



2
2
0


 .

Similarly, we obtain x(3) = x(4) = . . . =



2
2
0


 .

Therefore, the asynchronous version of the HNN settles down into the station-

ary state x(3) in 3 iterations.

1b) In the synchronous update, that is, by using the evolution equation (10),

the HNN produces a limit cycle of length 2. Indeed,
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At time t = 1:

W · x(0) =




0 3 −2
3 0 −4
−2 −4 0


 ·



0
1
1


 =




1
−4
−4


 .

Then,

x(1) =



h(+1− 0.5) + h(+1− 0.3)
h(−4− 0.1) + h(−4− 0.2)
h(−4− 0.1) + h(−4− 0.2)


 =



2
0
0


 .

For t = 2:

W · x(1) =




0 3 −2
3 0 −4
−2 −4 0


 ·



2
0
0


 =




0
6
−4


 .

Consequently,

x(2) =




h(0− 0.5) + h(0− 0.3)
h(+6− 0.1) + h(+6− 0.2)
h(−4− 0.1) + h(−4− 0.2)


 =



0
2
0


 .

Finally, at time t = 3:

W · x(2) =




0 3 −2
3 0 −4
−2 −4 0


 ·



0
2
0


 =




6
0
−8


 .

Then,

x(3) =



h(+6− 0.5) + h(+6− 0.3)
h(0− 0.1) + h(0− 0.2)

h(−8− 0.1) + h(−8− 0.2)


 =



2
0
0


 = x(1).

In this case, we obtain the periodic sequence

x(t)t≥0 = {x(0),x(1),x(2),x(1),x(2), . . .}.

Unlike the asynchronous HNN, the synchronous HNN with the same input pa-

rameters produced a limit cycle of length 2, similarly to the binary case.
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Experiment 2 This experiment aims to illustrate some differences between asyn-

chronous and synchronous dynamics of an HNN with celing neurons. Consider

the synaptic weights matrix W =

[
0 −3
−3 0

]
, and the thresholds matrix Θ =

[
−3.5 −2.5
1.5 −0.5

]
. In this case, S = {0, 1, 2} because the resolution factor of the

HNN is K = 2. The HNN has the following set of state vectors:

V =

{[
0
0

]
,

[
0
1

]
,

[
0
2

]
,

[
1
0

]
,

[
1
1

]
,

[
1
2

]
,

[
2
0

]
,

[
2
1

]
,

[
2
2

]}
.

Representing the elements of V in the order in which they are arranged by the blue

edges, marked with the digits 0, 1 . . . , 8 respectively, we can quickly visualize the

dynamics generated by the Equation (9) (asynchronous update mode) through the

directed graph illustrated by Figure 3. Note that the vector represented by the edge

3, corresponding to
[
1
0

]
, is the state vector that most attracts other state vectors.

The exceptions are the state vectors represented by the edges 2, 5, and 8.

Figure 3: Directed graph illustrating the dynamics of the asynchronous HNN given
by equation (9).

Similarly, consider the same matrices W and Θ, but the synchronous HNN,

according to the equation (10). The dynamics of the HNN is represented by the
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Figure 4: Directed graph illustrating the dynamics of the synchronous HNN given
by equation (10).

directed graph of Figure 4. Note that the dynamics of relaxation of the HNN in

the synchronous update is different from that of the asynchronous update, as we

might expect. In the synchronous update, the state vector
[
1
0

]
is the only attractor

of all the other vectors. In this particular experiment, by using asynchronous up-

date mode, the number of stationary states in the HNN is double than the number

of stationary states in synchronous updating. From the point of view of the use

of HNNs for the implementation of content-addressable memories, this example

suggests that the HNN with asynchronous updating could provide greater storage

capacity than the synchronous HNN. Despite this, the HNN with the synchronous

update mode does not always generate convergent sequences, which would hamper

its use in the implementation of content-addressable memories. See the remark 4,

and the Experiments 1 and 3.

Experiment 3 In order to evaluate the convergence of the sequences produced by

the HNN models with ceiling neurons, we proceeded as follows: We first gener-

ated 100 × 100 real-valued matrix R with entries rij = randn, where randn
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yields a random scalar drawn from the standard normal distribution. Then, we

computed U = 1
2(R + RT ), where RT denotes the transpose of R, and de-

fined the synaptic weight matrix by W = U− diag(u11, u22, . . . , u100100),where

diag(u11, u22, . . . , u100100) is the diagonal matrix composed of the diagonal ele-

ments of U. Note that W satisfies wij = wji and wii = 0 for all any indexes i and

j. Figure 5 shows the probability of a randomly generated HNN model with ceiling

neurons settles down into an equilibrium state in at most 1000 iterations, that is, we

allowed the neural networks to evolve while t ≤ 1000. Success probabilities have

been computed by repeating the procedure 1000 times for each resolution factor

K ∈ {1, 2, . . . , 10}, and using the frequentist definition of probability to obtain a

relative measure of the number of times that each HNN settled down to a stationary

state. We would like to point out that the synaptic weight matrix W, and the ini-

tial states x(0) were the same for all HNN models and were obtained by drawing

each component of the set {0, 1, . . . ,K}100 using a uniform distribution. The ele-

ments of thresholds matrix Θ were obtained by drawing each component from of

the real interval [−10, 10] ensuring that each column of Θ does not have repeated

elements. Note that the probability of the synchronous model reaching a stationary

state is always less than the probability of the corresponding asynchronous model.

In addition, this probability decreases dramatically with the increase of the reso-

lution factor K. In contrast, the probability of its asynchronous version to settle

down into a stationary state is always equal to 1, which corroborates with Theorem

1.

6 Concluding and Remarks

In this chapter, we introduce extensions of the Hopfield neural network based on

ceiling neurons. Initially, we present a theoretical review of the classic Hopfield

neural network model. Inspired by the mathematical definition of a ceiling neuron,

we built a Hopfield neural network whose set of possible states for a neuron was

expanded from the binary set {0, 1} to the multistate set S = {0, 1, ...,K}, where

K ≥ 1 is an integer called the resolution factor of the neural network. Then, we dis-

cuss the dynamics of the proposed models in both asynchronous and synchronous
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Figure 5: A comparison between the dynamics of HNN models with K ceiling
neurons.

update modes. The asynchronous version of the model always settles down into a

stationary state if the synaptic matrix W is symmetric with non-negative diagonal

elements. In turn, the synchronous model does not always generate convergent se-

quences under the same conditions on the W matrix. Finally, we performed com-

putational experiments to illustrate the dynamics explained throughout the text.

As future work, we intend to implement content-addressable memories using the

models based on ceiling neurons with different storage approaches aiming at stor-

ing and recalling grayscale and color images, as an alternative to complex-valued

and quaternion-valued HNN models. In particular, we intend to further investi-

gate the role of increasing the amount of thresholds for each neuron in view of the

possibility of using the proposed models as specific image filters.
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