
EasyChair Preprint
№ 8815

Electrodermal Sensing-Based Non-Invasive
Context-Aware Dehydration Alert System Using
Machine Learning Algorithm

K T Tharun, P Raahul Prasath, P Mounaguru, S Kathirvarshan
and R Sruthika

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 6, 2022



Electrodermal sensing-based Non-Invasive Context-Aware Dehydration Alert
System  Using Machine Learning Algorithm

Tharun K T, Raahul Prasath P, Mounaguru P, Kathirvarsan S, Sruthika R

Department of ECE,Bannari Amman Institute of Technology, Sathyamangalam.

Abstract:

Staying hydrated and drinking fluids is extremely crucial to stay healthy and maintaining even basic bodily
functions. Studies have shown that dehydration leads to loss of productivity, cognitive impairment and mood in
both men and women. However, there are no such existing tools that can monitor dehydration continuously and
provide alert to users before it effects on their health. In this paper, we propose to utilize wearable Electrodermal
Activity (EDA) sensors in conjunction with signal processing and machine learning techniques to develop first
time ever a dehydration self-monitoring tool, Monitoring My Dehydration (MMD), that can instantly detect the
hydration level of human skin. Moreover, we develop an Android application over

Bluetooth to connect with wearable EDA sensor integrated wristband to track hydration levels of the user’s real
time and instantly alert to the users when the hydration level goes beyond the danger level. To validate our
developed tool’s performance, we recruit 5 users, carefully designed the water intake routines to annotate the
dehydration ground truth and trained state-of-art machine learning models to predict instant hydration level i.e.,
well-hydrated, hydrated, dehydrated and very dehydrated.

I. Introduction:

The Present innovation generally deals with A Non-Invasive Dehydration Monitoring and Alert System Using
Electro dermal Activity. Hydration level is a strong indicator of health that can help improve medical
implications on potential health hazards and it is extremely important to track the hydration level (HL) of human
body, specifically for children, the elderly and patients with underlying medical conditions such as diabetes.
Despite increased risks of disability, mortality and hospital admissions associated with water-loss, dehydration is
often unnoticed due to lack of immediate symptoms and instant measurement that necessitates the dehydration
measurement tool significantly.

This work combines the EDA sensor of the E4 device with common machine-learning models and basic Android
application frameworks to build a comprehensive application to detect user hydration levels and alert the user
that he should be drinking water. The data collection methods are described, along with difficulties encountered
with both the lack of available participants and technical issues from wearing the device for long periods of time.
Once this raw data is acquired, it has to be pre-processed; the pre-processing is described, and then details are
given on all the different techniques used to train models.



II. Methodologies :

A. Detecting Dehydration

Dehydration detection using mobile sensors is a relatively new concept. Users in good health were recruited to
initially perform a cognitive task known as the Stroop Task while being fully hydrated. During the course of the
task, EDA and Pressure Relief Value readings were collected using a wearable sensor. The participants were then
instructed to not consume liquids or water-heavy foods for the next 24 hours. Upon their return, they were
instructed to perform the same task while wearing the sensors. Finally, the participants rehydrated and performed
the same task once more. The authors then used various machine learning methods, such as logistic regression,
support vector machines, decision trees, and K-Nearest Neighbor (KNN) classifiers to model the data and predict
the dehydration of the user. Additionally, a variety of physiological measures were taken of the subjects to
confirm that they were, indeed, mildly dehydrated. The authors mention at the end of the paper that one of the
shortcomings of their study is that the hydration was only being sensed in a very controlled environment, and
that it would be valuable future work to assess the accuracy of similar methods at determining hydration levels in
less controlled environments. Another somewhat-similar paper is concerned with extracting features from EDA
data using a variety of methods and developed a new algorithm for the fast and efficient interpretation of EDA
data into EDA.

B. Overall Framework

The flow starts with the Empatica E4 device, which collects raw data about the user and doessome basic
preprocessing (for example, calculating Skin Conductance from EDA signals,non-negative sparse deconvolution
to extract components of EDA signal). It then sends this data to the user’s smartphone over Bluetooth. The
Android application on the user’s phone then preprocesses the data by using basic statistical methods to help
remove noise from the data. Once this is done, the data is fed to a pre-trained machine learning model using the
Waikato Environment for Knowledge Analysis (WEKA) Java library. Then, if the machine learning model
predicts a change in hydration level, it will trigger a method that sends the user anotification to alert them of their
changed hydration level.

C. Electrodermal Activity Feature Extraction

Electrodermal activity also known as skin conductance measurement over time includes two components. (i)
Skin conductance Base Level (SBL), which changes slowly over time (tonic changes) and indicates the general
activation of the sympathetic nervous system, (ii) Skin Conductance Responses (SCRs), changes that last for
shorter periods (phasic changes). SCRs indicate the activation of the somatic nervous system (SNS) but also
reflect responses to events that are new, unexpected, relevant, and/or aversive. Using EDA data to measure
arousal in a continuous stimulus setting requires three steps in data processing and analysis. First step is
pre-processing which involves data cleaning, filtering, down sampling, cutting, smoothing, artifact correction
and decomposition of the signal into its tonic and phasic components. The SBL is typically approximated by
frequency filtering, statistical modeling or simple linear interpolation between the skin conductance measures
that are not overlaid by responses. The second step is parameterization, which involves deciding which
parameter of the EDA data to measure/calculate. For a phasic parameter, this process includes massive
abstraction of the phasic signal component, for example, counting responses. The third step is the correlation of
the extracted data with the stimulus. We used LedaLab toolbox for EDA data preprocessing and extracting
features. We employed butterworth low-pass filter, hanning smoothing with window size 4 and manual
movement artifact correction. We decomposed EDA data into its tonic and phasic components using Continuous



Decomposition Analysis (CDA) and Discrete Decomposition Analysis (DDA) Continuous Decomposition
Analysis (CDA): This method helps extract the phasic (driver) information underlying the EDA signal, and aims
at retrieving the signal characteristics of then underlying sudomotor nerve activity (SNA). EDA data is
deconvolved by the general response shape which results in a large increase of temporal precision and then data
is being decomposed into continuous phasic and tonic components. This helps compute the several standard
features of phasic EDA. We tracked the related events as our pre-labeled activities and extracted 7 time-domain
features from CDA. We used standard deviation, mean and variances on these features over the activity
window.Discrete Decomposition Analysis (DDA): This method decomposes EDA data into distinct phasic
components and a tonic component by means of Nonnegative Deconvolution. The methodhelps capture and
explore all intra-individual deviations of the general response shape and compute a detailed full model of all
components in the entire data set. This method is particularly suited for physiological models of the SCR. We
extracted 5 features from DDA for each activity window and extracted statistical mean, variance and standard
deviation on these over the activity session.After data pre-processing and feature extraction, various different
machine learning and deep learning algorithms are applied, including the hybrid approach to estimate the skin
hydration.

The data was initially collected for the intervals of 5 to 30 minutes and then spitted into smallest segments using
a window operation. The window size, W, represents the size of each segment in seconds. Subsequently, feature
extraction is performed on the segmented data. It is worth mentioning that different window sizes produce
different data pattern after feature extraction. Considering this, an important task would be to identify the optimal
window size that produces best results. A feature space, F, of following nine statistical features is used: F∈
{Minimum, Mean, Standard Deviation, Percentile, Median, Kurtosi}. The values of each of the aforementioned
features are calculated for the window sizes of 30 and 60 seconds. After feature extraction, it is important to
determine the combination of features which generates the best performance for estimation of skin hydration. For
that purpose, a genetic algorithms is applied to evaluate all combinations of the features for each algorithm. The
data is segmented for each window size and above-mentioned nine features are extracted from each segment. For
instance, when a window size of 30 seconds is selected, the data is segmented into non-overlapping segments of
30 seconds and features are extracted from each segment of 30 seconds data. This creates a vector of nice feature
for each segment. Using these feature, the data-set is created.

D. User Interface and Notifications

The ‘Hydration Alert’ application is relatively simple and is composed of the ‘Main Activity’, a custom defined
Service, and various other custom classes and enumerations. The main activity has three important functions.
First, it is responsible for binding the Empatica E4 device service to the Android application, and handling any
connection issues. Second, the main activity manages the UI for the device, displaying the relevant information
in a clear, easy-to-understand interface. Third, it has the functions for creating and sending notifications;
whenever the user’s predicted hydration level changes, a callback function is triggered that both modifies the UI
and also sends the user a notification. Whether the application may be active in the foreground or the
background, connection always needs to be enabled until the application has been terminated. Once connected,
the phone initially calculates the hydration level and then displays it along with a visual cue of a high or low
water level. The Empatica framework used for connecting to and receiving data from the device is implemented
as a custom Android Service, implementing their public application programming interfaces. This interface
allows the Android service to run in the background, even after the application is suspended for continuous
monitoring of the user’s EDA levels. A custom interface is defined within the Service as well to allow for the
creation of delegate callback methods used by the main activity.



Figure 1  Detailed block diagram of the wearable blood sensor

The Blood sensors, alternating arrays of printed light-emitting diodes and photodetectors, can detect blood
oxygen levels in any part of the body. The sensor uses light-emitting diodes to emit red and near infrared light,
penetrating the skin and detecting the proportion of reflected light. The sensor made of biodegradable materials
utilizes edge-field capacitance technology to monitor arterial blood and then transmits the data wirelessly.

Figure 2  Detailed block diagram of the wearable sweat sensor

The Schematic illustrating the FWS that integrates human motion energy harvesting, signal processing,
microfluidic-based sweat bio sensing, and Bluetooth-based wireless data transmission to a mobile user interface



for real-time health status tracking and the System-level block diagram showing the power management, signal
transduction, processing, and wireless transmission of the FWS3 from the FTENG to the biosensors, then to the
user interface.

Figure 3 MMD Hydration Alert Android System Overview and Application’s user interface

The MMD Hydration Alert Android System Overview. The overall project layout is shown in Fig. 3. The flow in
Fig. 3 starts with the Empatica E4 device, which collects raw data about the user and does some basic
preprocessing. It then sends this data to the user’s smartphone over Bluetooth. The Android application on the
user’s phone then preprocesses the data by using basic statistical methods to help remove noise from the data. We
can see the interface the user will see when the user connects the device to the phone. Once connected, the phone
initially calculates the hydration level and then displays it along with a visual cue of a high or low water level.
The Empatica framework used for connecting to and receiving data from the device is implemented as a custom
Android Service, implementing their public application programming interfaces.

Figure 4 Schematic diagram of Simple Adaptive Multi-label Activity Recognition Framework

The Adaptive Multi-label activity recognition which can provide instant postural and drinking water events
classification. However, our ultimate goal is to detect instant hydration level using EDA signal. We first extract
12 EDA features from EDA raw signal and fed them into machine learning models.



III.Conclusion:

In this study we have proposed a Electrodermal sensing-based Non-Invasive Context-Aware Dehydration
Alert System Using Machine Learning Algorithm Detection.Through this we can validate our developed tool’s
performance.
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