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Abstract. The recent advancements in artificial intelligence drive the
widespread adoption of Machine-Learning-as-a-Service platforms, which
offers valuable services. However, these pervasive utilities in the cloud
environment unavoidably encounter security and privacy issues. In par-
ticular, a membership inference attack (MIA) poses a threat by recogniz-
ing the presence of a data sample in a training set for the victim model.
Although prior MIA approaches underline privacy risks repeatedly by
demonstrating experimental results with standard benchmark datasets
such as MNIST and CIFAR. However, the effectiveness of such techniques
on a real-world dataset remains questionable. We are the first to perform
an in-depth empirical study on black-box based MIAs that hold real-
istic assumptions, including six metric-based and three classifier-based
MIAs with the high-dimensional image dataset that consists of identi-
fication (ID) cards and driving licenses. Additionally, we introduce the
Siamese-based MIA that shows similar or better performance than the
state-of-the-art approaches and suggest training a shadow model with
autoencoder-based reconstructed images. Our major findings show that
the performance of MIA techniques against too many features may be
degraded; the MIA configuration or a sample’s properties can impact the
accuracy of membership inference on members and non-members.

Keywords: Membership Inference Attack · Machine Learning.

1 Introduction

Today, the advancements in artificial intelligence technologies lead to the wide
adoption of Machine Learning as a Service (MLaaS) across various sectors and
services. (e.g., ChatGPT [25], Claude [2], DALL-E [26]). While MLaaS stores a
model in the cloud [1,22] and processes cloud and processes the vast amounts of
data remotely every day, the pervasive utilities inevitably expose a severe threat
to security and privacy such as information leaks. One such concern is a member-
ship inference attack [33] (hereinafter dubbed MIA) where an adversary attempts
to determine the presence of a data sample in a training dataset while building a
⋆ Corresponding author
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model. A successful inference can accidentally reveal sensitive information such
as a patient’s medical record. Meanwhile, from a non-adversarial perspective, an
MIA technique can be utilized to evaluate the effectiveness of machine unlearn-
ing [4] that aims to forget a particular instance or a class (e.g., data deletion
request to comply with regulations such as General Data Protection Regulation
(GDPR) [21] and California Consumer Privacy Act (CCPA) [35].

Recent advances in MIA introduce varying techniques depending on the
attacker’s knowledge; black-box based [31,11,7,36,34,38,5,23,18,40,19,30,8] and
white-box based [24,17] MIAs. The former setting requires a strong assumption
that the adversary is aware of a victim model’s architecture, parameters, and
dataset, while the latter assumes that part of that information has been known.
However, prior MIA approaches [31,11,36,34,38,5,18,40,19,30,8,24] evaluate their
effectiveness with a standard (well-known) and (relatively simple) benchmark
datasets such as MNIST [9], CIFAR-10 [15], and CIFAR-100 [15]. Besides, each
MIA technique has different assumptions, rendering the potential applicability
on a (high dimensional and complex) real-world dataset questionable.

In this work, we provide an in-depth empirical study of black-box based
MIAs including six metric-based black-box MIAs and three classifier-based black-
box MIAs; the effectiveness of different MIA approaches under the same setting
with both traditional benchmark (e.g., CIFAR-10 [15]) and real-world datasets
(KID34K [27]: identification cards and driving licenses). We introduce a Siamese-
based MIA that adopts a prediction vector generated by a shadow model alone,
where the model learns the distances from sample pairs (i.e., decreasing the
distance between same-label-pair samples and increasing the distance between
different-label-pair samples). Notably, our Siamese-based MIA achieved high per-
formance (i.e., 70% AUC) with CIFAR-10 among other state-of-the-art tech-
niques, however, it did not work with KID34K. Additionally, we conduct thor-
ough analyses in varying settings: training a shadow model with reconstructed
images with an Autoencoder [3] so that the model can learn essential features,
and splitting KID34K in a way that better discloses membership.

In summary, our major findings indicate that 1 the performance of existing
MIA approaches may not be persistent in a real-world dataset that contains too
many features, 2 the accuracy of membership inference on members and non-
members can vary depending on the configuration, and 3 a sample’s properties
can significantly impact on the success of an MIA.

The following summarizes our contributions:

– To the best of our knowledge, we first apply an MIA to a (high dimensional)
real-world dataset, demonstrating the effectiveness of MIA.

– We conduct varying experiments on different black-box MIA techniques under
the same setting, including six metric-based and three classifier-based MIAs.

– We propose a Siamese-based MIA that learns the distance difference between
member and non-member samples, being capable of similar membership in-
ference performance even with limited information.

– We empirically show that reconstructed images by an autoencoder can poten-
tially assist in training a shadow model for better MIA performance.
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– We perform an in-depth analysis with different configurations: splitting a
training dataset, confusion matrices, and visualizations.

2 Related Work

We survey varying MIAs, classifying them primarily into white-box based [16,17,24]
and black-box based MIAs. The latter can be fallen into two types depending
on the model construction: a metric-based attack [31,11,7,36,34,38,5,23] (gen-
erating a shadow model) and a classifier-based [18,40,19,30,8] attack (generat-
ing both shadow and classification models). Besides, we explore defense strate-
gies [6,24,13,29,14] against MIAs.
White-box based MIAs: A white-box MIA assumes that the attacker has
complete knowledge of the internal parameters of a victim model and significant
information about the training dataset. As one may expect, such supplementary
information enhances overall attack performance [24] by utilizing the intermedi-
ate computations of the victim model as inputs to build an MIA attack model.
However, assuming that the adversary is aware of a significant portion of the
private training dataset is unrealistic. Later, Liu et al. relaxed such an assump-
tion on a training dataset [17]. Note that our work focuses on black box-based
MIAs with a realistic setting.
Black-box based MIAs: A black-box MIA assumes that the attacker has query
access to a victim model with the knowledge of its structure and the distribution
of its training dataset. A classifier-based MIA [18,40,19,30,8] infers membership
during attack model training from the outputs of a shadow model. Trajecto-
ryMIA [18] leverages differences in the loss trajectory of a victim model during
the training and testing stages. Note that knowledge distillation has been em-
ployed by training a shadow model because a black-box setting does not allow
the attacker to directly obtain the victim model’s loss trajectory. Meanwhile, a
metric-based MIA [31,11,7,36,34,38,5,23] uses specific metrics derived from the
model’s outputs to determine membership. The intuition behind this technique
is that the victim model has been overfitted. In ensemble models like Ensem-
bleMIA [31], the performance improves as the number of models used increases,
but privacy decreases. The fused method of ensemble models enables member-
ship inference by averaging prediction confidence values, amplifying differences
between training, and testing sample confidences to facilitate membership in-
ference. MIB [11] infers membership by adding triggers to victim samples and
verifying if the model has been backdoored.
Defenses against MIAs: In general, an overfitted model can be victimized
by MIAs. In response, RELAXLOSS [6] and HEMP [24] employ regularization
to mitigate the overfitting problem. For example, RELAXLOSS [6] leverages a
training loss of a victim model with a threshold to prevent model overfitting:
adopting a gradient descent during training when the loss exceeds the threshold
or either a gradient ascent or posterior probability flattening otherwise. Similary,
HAMP [24] attempts to mitigate overfitting with label smoothing. Meanwhile,
DMIG [13] utilizes synthetic data (e.g., reconstructed images) for training a
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model to provide incomplete prediction vectors. MemGuard [14] appends a noise
to prediction vectors to degrade the attack model’s performance. Another direc-
tion leverages differential privacy to defend against MIAs, such as DPSGD [29].

3 Background

3.1 Membership Inference Attacks

Problem Definition: An MIA aims to accurately infer whether a specific sam-
ple has been part of the training dataset for a machine learning model. Formally,
we define an MIA as in Equation 1: the attack model g(θα, f) determines the
membership in a trained machine learning model of f(θv, x) when a target sam-
ple x is given. Note that 1 represents that x is a member or 0 otherwise.

g(θα, f(θv, x)) → {0, 1} (1)

Impact: On one hand, MIAs can pose a severe threat in terms of privacy when
sensitive information (e.g., medical records) has been trained. On the other hand,
MIAs can be utilized in the field of machine unlearning to verify its effectiveness
(e.g., the unlearning request has been applied).
Types and Assumptions: Based on the knowledge of an attacker, MIAs can
be predominately categorized into white-box and black-box attacks. The former
setting [16,24] requires a strong assumption that an adversary owns the knowl-
edge of a victim model’s architecture, its model algorithm and parameters, and
even a dataset. Some approaches [24,17] assume that an attacker has complete
access to the victim model, being able to observe intermediate training informa-
tion such as model parameters or gradients for further inference. Meanwhile, the
latter setting relaxes the assumption that the adversary has limited knowledge
(e.g., model architecture [18,19,30,8,31], dataset distribution [34,38,5,23], or tar-
get samples [11]) about the victim model (i.e., distinguishing a membership with
queries and corresponding outputs).

3.2 Black-box MIAs

This work merely focuses on black-box MIAs that hold more realistic configura-
tions than white-box ones, which can be classified mainly into metric-based and
classifier-based MIAs (Hu et al. [12]).
Metric-based MIAs: Metric-based MIAs [31,11,7,36,34,38,5,23] involve query-
ing a model to obtain a prediction vector. Simply put, prediction vectors from
querying a model can be computed using a specific metric, followed by com-
paring those predictions with a pre-defined threshold. Note that metric-based
MIAs may use shadow models (for accuracy) that approximate a target victim
model, or may not use them (for efficiency). Hu et al. [12] introduce the follow-
ing four types (each technique exploits different aspects of the model’s output):
1 a correctness-based attack infers membership if the prediction vector accu-
rately predicts the label; 2 a loss-based attack infers membership if the loss
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of the prediction vector is smaller than the training loss, using a loss metric;
3 a confidence-based attack infers membership when the maximum prediction
confidence exceeds a specified threshold; and 4 an entropy-based attack infers
membership if a prediction vector’s entropy is smaller than a specified threshold.
Classifier-based MIAs: A classifier-based MIA [18,40,19,30,8] involves shadow
model(s)(MS) to mimic a victim model (MV ), leveraging it to create an attack
dataset (DA) labeled with either a member or a non-member. Then, an attack
model (MA) is trained to infer the membership of a given sample.

4 Empirical Study on Black-box based MIAs

4.1 On the Effectiveness of Black-box based MIAs

This work reproduces experiments with six metric-based MIAs and three classifier-
based MIAs. Section 6.2 describes the effectiveness of previous MIAs.

Metric-based MIAs: First, the threshold-based attack [34] (loss-based) infers
membership of a sample by querying the target model (i.e., victim) to obtain
prediction vectors and comparing their loss with a predefined threshold. Second,
the threshold entropy-based attack [34] (entropy-based) infers membership of a
sample by querying the target model to obtain prediction vectors and comparing
their entropy loss with a predefined threshold. Third, the likelihood ratio attack
(LiRA) [5] (loss-based) infers membership using loss values and logits obtained
from querying a shadow model (whose structure is the same as a target model).
The subsequent three attacks are dubbed as the descriptions from the implemen-
tation of Ye et al. [39]. Fourth, the population metric attack (loss-based) [39] is
a model-dependent MIA that applies different attack thresholds for each target
model, leveraging the dependency of loss thresholds on each model to enhance
performance. Fifth, the shadow metric attack [33,39] (correctness-based) is a
label-dependent MIA where the adversary infers membership using predicted
labels obtained from querying the model. The adversary uses the most limited
knowledge to perform the attack. Lastly, the reference metric attack [39] (loss-
based) is a sample-dependent MIA where the adversary applies different attack
thresholds for the target data samples. This attack trains multiple reference
models using data samples excluding the target and evaluates losses for specific
records. Similar to MIAs designed for summary statistics and graphical models,
it uses reference models to compute the probability of the null hypothesis.
Classifier-based MIAs: First, logistic regression-based attack [34] trains a neu-
ral network with prediction confidences from a shadow model as features to infer
membership. Second, SAMIA [40] utilizes a self-attention mechanism to infer a
membership. In a nutshell, applying neural network pruning to both shadow and
victim models enhances the model’s memorization of training data, potentially
improving the performance of membership inference. Third, the confidence-based
neural network attack [33] adopts confidence vectors generated by a shadow
model to train an attack model for membership inference.
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Fig. 1: Overall Siamese-based MIA workflow. An adversary generates a shadow
model that mimics a target (victim) model for binary classification (Step 1).
Next, the attacker prepares a dataset (Step 2) that is fed to the Siamese architec-
ture, followed by training an attack model (Step 3). Once complete, membership
can be deduced (Step 4) with the attack model. D and M represent a dataset
and a model with their superscripts that denote a set (i.e., victim, shadow, at-
tack) and their subscripts that denote a usage (i.e., training or testing).

4.2 Our Approach: Siamese-based MIA

We propose the Siamese network-based MIA (Figure 2) approach that learns
distances between member and non-member samples.
Assumptions: Similar to the general black-box scenario, we assume that an
adversary only has a query access to the victim model (MV ) with the knowledge
of its architecture. Besides, the adversary owns a shadow dataset (DS

train) that
follows the same distribution as the victim model’s training dataset (DV

train).
Overall Workflow: Unlike the previous classifier-based MIA approach [40] that
uses multiple factors (e.g., confidence vector, prediction vector, one-hot label,
confidence sensitivity), we use the confidence vectors generated by the shadow
model (MS) alone for training. This reduces the training time of the attacker
model (MA), saving computing resources. Figure 1 concisely illustrates the over-
all workflow of our Siamese-based MIA that consists of the following four stages.
(Step 1) Shadow Model Training: With the assumption that the distribution
of a shadow dataset follows that of a victim, we divide the entire dataset into
shadow and victim datasets, each consisting of 50%. Then, we split the shadow
dataset into training and test sets, representing members and non-members so
that the attacker can train MS .
(Step 2) Dataset Preparation: Obtaining the predicted vectors from MS

trained on DS
train, we label those vectors for the training dataset as members

and those for the test dataset as non-members. We prepare a positive set (e.g.,
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Fig. 2: Overview of our Siamese-based MIA. Taking the two predicted vectors
from the member and non-member samples as input, we train an attack model
so that a distance can get close for positive sets or distant for negative sets.

member to member or non-member to non-member pairs) and a negative set
(e.g., member to non-member pairs) for training MA with the Siamese network.
(Step 3) Attack Model Training: With DA from MS , the adversary trains
MA. The Siamese network-based attack model learns distances between samples,
aiming to decrease the distance between same-label-pair samples while increasing
it between different-label-pair samples. The distance (d) between the two inputs
can be computed as d = ∥pθ(v1), pθ(v2))∥2 between the two vectors where v1 and
v2 are the output vectors of the Siamese neural network. Equation 2 represents
the contrastive loss function of Siamese that minimizes the distance where y
represents the label (0 or 1) for the input pairs.

L(v1, v2, y) = y∥v1 − v2∥2 + (1− y) ·max(0,m2 − ∥v1 − v2∥2) (2)

Note that m is a hyperparameter that defines the lower bound distance between
samples of different classes.
(Step 4) Membership Inference: Now, the adversary can infer membership
with MA via MV . Suppose that the adversary has non-member and unknown
samples for membership inference. Then, those samples are fed into the victim
model, producing predicted vectors. Finally, the attack model takes the vectors,
producing the output of 1 for a member sample, or 0 otherwise.

4.3 Image Reconstruction with an Autoencoder

To the best of our knowledge, we first conduct varying MIAs against one of the
real-world datasets, KID34K [27] (Section 6.1), rather than a common dataset
like CIFAR-10 [15] or MNIST [9]. This is challenging because KID34K contains
high-resolution images (i.e., 512 × 800) with two-class classification (i.e., Real
or Fake). Our experimental results (Section 6.2) demonstrate that the perfor-
mance of most existing approaches (including our Siamese-based MIA) has been
considerably degraded.
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Table 1: We split KID34K [27] into training and testing sets, each divided in
half according to a victim and shadow set; 25% for DS

train, DV
train, DS

test, and
DV

test. Besides, we define two datasets: Drd that randomly splits each dataset
and Dsp that splits by the individual user (i.e., realistic assumption to check the
membership of a single person). G, P , and S represent a set of samples whose
labels are Genuine, Print, and Screen. It is noted that we define a desirable
set by combining sample groups: e.g., G|P represents a union of Genuine and
Print samples.

Train Set (Member: 50%) Test Set (Non-Member: 50%)

Victim (DV
train) Shadow (DS

train) Victim (DV
test) Shadow (DS

test)

Dataset Class Label G|P G|S All G|P G|S All G|P G|S All G|P G|S All

Drd

Real Genuine 3,073 3,073 3,073 3,073 3,073 3,073 3,073 3,073 3,073 3,073 3,073 3,073

Fake
Print 1,813 0 1,813 1,801 0 1,801 1,813 1,813 1,813 1,801 1,801 1,801
Screen 0 3,478 3,478 0 3,488 3,488 3,478 3,478 3,478 3,478 3,478 3,478

Total 4,886 6,551 8,364 4,874 6,561 8,362 8,364 8,364 8,364 8,352 8,352 8,352

Dsp

Real Genuine 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335 3,335

Fake
Print 1,707 0 1,707 1,706 0 1,706 1,707 1,707 1,707 1,706 1,706 1,706
Screen 0 2,997 2,997 0 2,996 2,996 2,997 2,997 2,997 2,996 2,996 2,996

Total 5,042 6,332 8,039 5,041 6,331 8,037 8,039 8,039 8,039 8,037 8,037 8,037

We hypothesize that a shadow model learns excessive features (due to high
dimensions). To extract significant features for decision-making, we adopt an
autoencoder [3] that allows for compressing an input image to a lower dimension
(i.e., latent vector). Then, we reconstruct images that retain essential features
for training a shadow model.

5 Implementation

Victim and Shadow Models: We adopt ResNet20 [10] and ResNet50 [10] as
the victim and shadow models provided by the PyTorch [28]’s timm library (Py-
Torch Image Models) [37]. We set the Adam optimizer with β1 = 0.9, β2 = 0.99,
and ϵ = 10−3, and the training epochs to 100 for both models. Each model’s
training took around 4 hours with approximately 8, 000 samples. Another hy-
perparameter is the number of shadow models for each MIA: two for the logistic
regression attack [34] and LiRA [5], five for SAMIA [40] and the confidence-
based neural network attack [33], and only one for our Siamese-based MIA. It is
noteworthy to mention that increasing the number of shadow models does not
guarantee higher MIA performance at all times.
Siamese-based MIA: We developed the Siamese-based MIA framework based
on the original Siamese structure with PyTorch [28]. Training the model with
around 8,000 samples took about 3 hours. We set up the Adam optimizer with
ϵ = 10−3 and the model training epochs to 100.
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Image Reconstruction with an Autoencoder: We implemented the Au-
toencoder [3] architecture with PyTorch [28] for creating reconstructed images.
The autoencoder training took approximately 12 hours with around 8,000 sam-
ples from our shadow dataset. We set up the Adam optimizer with ϵ = 10−6 and
the training epochs to 200.

6 Evaluation

6.1 Experimental Setup

Our experiments were conducted on a server equipped with an Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz, 500GB RAM, and three Matrox Electronics Systems
MGA G200e [Pilot] with 480GB of memory.
Datasets: For evaluating the effectiveness of varying black-box based MIAs, we
use both a common (CIFAR-10 [15]) and a real-world (KID34K [27]) dataset.
CIFAR-10 [15] is an image dataset that consists of different objects with a 3×32×
32 resolution, which contains 10 classes, with 6,000 samples per class, a total of
60,000 samples. KID34K [27] is an image dataset comprising identification cards
and driving licenses with a 3×512×800 resolution. It contains two classes: Real
and Fake. The Real class contains samples with genuine labels, while the Fake
class includes samples labeled as print (i.e., paper-printed image) or screen
(i.e., screen-captured image). There are 10,488, 13,728, and 10,444 samples for
genuine, screen, and print, respectively. Table 1 shows how we split KID34K
into training and test datasets with each dividing in half to a victim and a
shadow set.
Evaluation Metrics: We adopt F1 and AUC (Area Under Curve) as evaluation
metrics. F1 is the harmonic mean of precision and recall. AUC is computed
as the area under the ROC (Receiver Operating Characteristic) curve, which
illustrates the change in TPR (True Positive Rate) with respect to FPR (False
Positive Rate) variations.
Research Questions: We define the following three research questions (RQs)
to answer the effectiveness and applicability of various MIAs.

– RQ1. How effective are black-box based MIAs (including our Siamese-based
MIA) on a previous benchmark dataset (i.e., CIFAR-10 [15])(Section 6.2)?

– RQ2. How well do the MIAs perform against a real-world dataset (KID34K [27])
(Section 6.3)?

– RQ3. How well the reconstructed images improve MIA performance on a real-
world dataset (Section 6.4)?

6.2 Comparison of Different Black-box MIA Approaches (RQ1)

Using CIFAR-10, we conduct experiments with nine black-box MIA techniques
as a baseline, comparing them with our Siamese-based MIA. Table 2 summarizes
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Table 2: Empirical results of varying MIAs against the victim model trained on
CIFAR-10. The re-evaluation of metric-based MIAs demonstrates discrepancies
(< 0.6) with the original performance. While binary classifier-based approaches
show better performance, our Siamese-based MIA ranks the highest AUC (0.7).

Attack Technique Base Approach AUC

MIA Evaluation (Threshold attack) [34] Metric-based (Loss) 0.52
MIA Evaluation (Threshold entropy attack) [34] Metric-based (Entropy) 0.51
LiRA [5] Metric-based (Loss) 0.58
Privacy Meter (Population metric attack) [39] Metric-based (Loss) 0.50
Privacy Meter (Shadow metric attack) [33,39] Metric-based (Correctness) 0.50
Privacy Meter (Reference metric attack) [39] Metric-based (Loss) 0.50
MIA Evaluation (Logistic regression attack) [34] Classifier-based 0.51
SAMIA [40] Classifier-based 0.67
Confidence-based neural network attack [33] Classifier-based 0.64
Siamese-based MIA (Ours) Classifier-based 0.70

comparison results with the CIFAR-10 dataset. Our findings show that 1 metric-
based MIAs tend to have discrepancies with the original performance (< 0.6),
2 binary-classifier-based MIAs better perform than metric-based ones, and 3
our Siamese-based MIA achieves the highest AUC (0.7) with efficiency.

6.3 Effectiveness of Black-box MIAs on a Real-World Dataset
(RQ2)

We assess varying black-box MIAs against KID34K [27], one of the real-world
datasets as a victim model. Notably, we choose the two MIA techniques (i.e.,
SAMIA [40] and confidence-based neural network [33]) that exhibit relatively
higher performance. Table 3 presents a handful of interesting findings. First,
the results indicate that an MIA approach against a common dataset may not
be persistent in a real-world dataset. For example, the AUCs of our Siamese-
based approach demonstrate slightly behind SAMIA and the confidence-based
technique. Second, membership inference accuracy on a member (Am) and a
non-member (An) sample can largely vary depending on a configuration and a
dataset. Even with the same approach (e.g., SAMIA), the accuracy on deducing
a non-member (An) is higher than a member (Am) in a random selection setting,
however, the other way around in a user split setting. Third, it is possible that the
success of an MIA may vary depending on the sample’s property (e.g., randomly
selected sample VS. member-oriented sample) as well as an MIA technique.

6.4 Effectiveness of Autoencoder-reconstructed Images (RQ3)

Table 3 indicates that attack models using reconstructed images improves (or
is on par with) attack success rates (both F1 score and AUC) where overall
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Table 3: We conduct a variety of MIA experiments on a real-world dataset. The
baselines are SAMIA and the confidence-based neural network, which demon-
strates high performance. We prepare a shadow dataset with different configura-
tions to demonstrate that overall MIA performance can be affected by i) a data
sample (by splitting it into Drd and Dsp), ii) reconstructed images, and iii) MIA
approach. In our experiment, combining SAMIA with reconstructed images of
Dsp using an autoencoder shows the best performance. A, P, and R represent ac-
curacy, precision, and recall while Am and An denote the accuracy of a member
and a non-member. (*) means our Siamese-based MIA. A bold number repre-
sents better performance between original and reconstructed corpus from Dsp.

Corpus Selection Dtrain Method Am An A P R F1 AUC

Original Drd G|P SAMIA 0.17 0.83 0.50 0.50 0.50 0.45 0.50
Drd G|S SAMIA 0.30 0.70 0.50 0.50 0.50 0.48 0.50
Drd All SAMIA 0.21 0.79 0.50 0.50 0.50 0.45 0.50
Dsp G|P SAMIA 0.99 0.25 0.62 0.77 0.62 0.56 0.62
Dsp G|S SAMIA 0.61 0.45 0.53 0.55 0.53 0.53 0.53
Dsp All SAMIA 0.73 0.35 0.54 0.56 0.54 0.52 0.54
Drd G|P Confidence-based 0.18 0.83 0.50 0.51 0.50 0.45 0.50
Drd G|S Confidence-based 0.75 0.25 0.50 0.50 0.50 0.47 0.50
Drd All Confidence-based 0.20 0.81 0.50 0.50 0.50 0.45 0.50
Dsp G|P Confidence-based 0.35 0.99 0.67 0.79 0.67 0.63 0.67
Dsp G|S Confidence-based 0.53 0.56 0.54 0.56 0.54 0.54 0.54
Dsp All Confidence-based 0.70 0.38 0.54 0.56 0.54 0.53 0.54
Drd G|P Siamese-based* 0.14 0.85 0.50 0.50 0.50 0.42 0.50
Drd G|S Siamese-based* 0.15 0.85 0.50 0.50 0.50 0.43 0.50
Drd All Siamese-based* 1.00 0.00 0.50 0.25 0.50 0.33 0.50
Dsp G|P Siamese-based* 0.19 0.83 0.51 0.53 0.51 0.45 0.51
Dsp G|S Siamese-based* 0.13 0.82 0.48 0.47 0.48 0.41 0.47
Dsp All Siamese-based* 0.17 0.82 0.50 0.51 0.50 0.44 0.50

Reconstructed Dsp G|P SAMIA 0.40 0.93 0.66 0.74 0.66 0.64 0.66
Dsp G|S SAMIA 0.67 0.41 0.54 0.56 0.54 0.53 0.54
Dsp All SAMIA 0.56 0.50 0.53 0.54 0.53 0.53 0.53
Dsp G|P Confidence-based 0.36 0.95 0.66 0.75 0.66 0.62 0.66
Dsp G|S Confidence-based 0.60 0.49 0.54 0.56 0.54 0.54 0.54
Dsp All Confidence-based 0.63 0.44 0.53 0.55 0.53 0.53 0.53
Dsp G|P Siamese-based* 0.54 0.50 0.52 0.54 0.52 0.51 0.52
Dsp G|S Siamese-based* 0.16 0.80 0.48 0.48 0.48 0.42 0.48
Dsp All Siamese-based* 0.22 0.75 0.49 0.50 0.49 0.45 0.49

SAMIA with the autoencoder-generated samples ranks the highest (AUC of
0.66). For instance, our proposed Siamese-based MIA showed a 5.8% increase in
F1 in the G|P setting with Dsp. For SAMIA [40], an 8.1% increase in F1 was
achieved in the same configuration, observing overall increases in most other
settings. However, in the case of confidence-based neural network attack [33],
AUC increase was limited (around 0.3 %) in the G|P configuration with Dsp.
Additionally, our experiment on the effectiveness of a different size of latent
vectors (e.g., 128 vs. 512) shows limited impact on the performance of a shadow
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Table 4: Experimental results of shadow models’ performance using the whole
Dtrain (i.e., All) according to a dimension (d) in a latent space. We adopt
d = 128 because of the little gap in performance.

Method d A P R F1 AUC

SAMIA 128 0.53 0.54 0.53 0.53 0.53
512 0.53 0.54 0.53 0.53 0.53

Confidence-based 128 0.53 0.55 0.53 0.53 0.53
512 0.53 0.55 0.53 0.53 0.53

Siamese-based* 128 0.49 0.50 0.49 0.45 0.49
512 0.50 0.51 0.50 0.48 0.50

(a) Drd (TP) (b) Drd (TN)

(c) Dsp (TP) (d) Dsp (TN)

Fig. 3: Grad-CAM [32] results of a shadow model that is trained on the randomly
picking dataset (Drd) and the individually splitting dataset (Dsp). The model
sees more features in Dsp for true positive samples (e.g., Real → Real) than
those in Drd. Meanwhile, the model recognizes relatively plentiful features in
both Drd and Dsp for true negative samples (e.g., Fake → Fake). TP and TN
denote a true positive and negative.

model. Note that we use d = 128. Table 4 summarizes the experimental results
of three shadow models: SAMIA, confidence-based, and Siamese-based MIAs.

6.5 In-depth Analysis of Black-box MIAs on a Real-World Dataset

This section delves into in-depth analysis of the results of our MIA experiments
in Table 3. According to the description of the KID34K [27] dataset, it contains
the images of identification cards from 37 users and driver licenses from 45 users,
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(a) O (G|S) (b) O (G|P ) (c) O (All)

(d) R (G|S) (e) R (G|P ) (f) R (All)

Fig. 4: t-SNE [20] results of SAMIA with Dsp. This visualization illustrates the
reason why the shadow model trained with Dtrain that consists of G|P (e.g.,
relatively clear boundaries for decision-making) achieves the highest F1 and AUC
(Table 3). O and R denote the original and reconstructed images, respectively.

with a total of 46 users. Because the random selection of a dataset (Drd) lowers
the performance of a shadow model, we split it based on an individual sample
(Dsp). We visualize the results of SAMIA with Dsp using t-SNE in Figure 4. In
the G|P cases (e.g., datasets picking genuine and print labels) of both original
and reconstructed images, the model recognizes clear boundaries for membership
decisions. Additionally, Figure 3 illustrates Grad-CAM [32], showing that the
shadow model with Dsp identifies more features than that with Drd for true
positive samples (Figure 3 (a) and Figure 3 (c)).

7 Discussion & Limitations

Threats to Validity: We empirically demonstrate that MIA results may vary
depending on the configuration, the distribution of a dataset, the number of
classes, and the characteristics of a sample as well as an approach. We believe
that a single counterexample can be allusive to convey that MIAs against ar-
bitrary datasets can be ineffective. However, the results with other real-world
datasets may be possibly inconsistent with ours: i.e., the dataset in our ex-
periment is not fully representative with different features (financial or health
data). As a final note, this work focuses solely on black-box MIAs under relaxed
assumptions; hence the results with white-box MIAs may be different.
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Usage of Reconstructed Images for MIAs: Although using autoencoder-
generated images for training a shadow model enhances the success rate of MIAs,
we observe the degradation of the shadow model’s performance (around 16%).
While an adversary can adopt this strategy for reducing dimensions, optimizing
the size of a latent vector that encompasses essential features is an open problem.
Machine Learning Bill of Materials (ML-BOM) and MIAs: As the de-
mand for reliability in machine learning services increases, a comprehensive in-
ventory that documents the whole process of model creation, deployment, and
maintenance is needed. This request inspires the Machine Learning Bill of Mate-
rials (ML-BOM), ensuring transparency, accountability, traceability, and compli-
ance. We expect that the assumption of white-box based MIAs become feasible
upon the broad adoption of ML-BOM in the near future.
Trade-offs between Membership Inference Attacks and Defenses: In
general, defending against MIAs often involves trade-offs between model per-
formance (i.e., usability, accuracy) and security (i.e., privacy, robustness). For
instance, a model with high-performance could be susceptible and targetable to
MIAs; however, security mitigations such as differential privacy, model distilla-
tion, or adopting multiparty computation could be prone to reduce performance
with additional overheads.

8 Conclusion

Lately, the prevalent utilities of machine learning-based applications have raised
concerns about security and privacy issues. An MIA that determines the presence
of a sample in a training set can pose a severe threat, when sensitive information
such as one’s medical record, driver license, passport, or identification card in-
formation is inadvertently revealed. In this work, we conduct an empirical study
focusing on black-box based MIAs against a real-world dataset, KID34K dataset,
which contains driver license and identification card information. Through exten-
sive experimental evaluation, our findings reveal that the performance of existing
MIAs could be degraded and impacted by their settings or a sample’s properties.
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