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Abstract. This study examines the water quality at the Surya Sembada water 

treatment plant in Surabaya, Indonesia, by analyzing turbidity, pH, permanga-

nate index, and chlorine residual. Recognizing the inherent autocorrelation 

within these parameters, a Long Short-Term Memory (LSTM) neural network 

was implemented to model their temporal dependencies. Optimal LSTM hy-

perparameters were determined through rigorous experimentation using MSE, 

RMSE, and MAE as evaluation metrics. Residuals from the LSTM model was 

subsequently analyzed using a Maximum Multivariate Cumulative Sum 

(MCUSUM) control chart. Phase I analysis indicated a statistically non-

conforming process, suggesting a significant process shift. Subsequent Phase II 

monitoring confirmed ongoing process instability. The application of LSTM 

modeling and Max-MCUSUM control charting in this study provides a robust 

framework for early detection of anomalies and process deviations in water 

treatment operations, facilitating timely corrective actions and improvements in 

water quality management. 
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1 Introduction 

Sustainable water resource management is critical for mitigating the challenges 

posed by rapid urbanization in cities like Surabaya. Balancing escalating water 

demands with resource conservation is essential to preserving public health and 

ecological integrity. Implementing robust strategies to safeguard both water quantity 

and quality is paramount for the city's long-term sustainability. Surya Sembada, a 

state-owned water treatment plant established in 1976, is mandated to provide potable 

water to the Surabaya metropolitan area. As a vital public utility, it plays a substantial 

role in the local economy, contributing significantly to Regional Original Revenue. 

To safeguard public health, Surya Sembada adheres to stringent water quality 

standards as outlined in Indonesia's Ministry of Health Regulation No. 
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492/MENKES/PER/IV/2010. 

The Surabaya River is characterized by a deteriorated water quality profile, primari-

ly attributed to elevated levels of organic pollutants and an aging wastewater treat-

ment infrastructure. Comprehensive assessments utilizing the Pollution Index (PI) and 

STORET methodologies have consistently categorized the river's water quality as 

ranging from moderately to severely polluted, thereby emphasizing the urgent need 

for remediation interventions. 

To address this, Statistical Quality Control (SQC) methods, such as control charts, 

monitor water treatment quality[1]. Analysis of water quality data reveals the pres-

ence of autocorrelation, rendering traditional monitoring methods less effective. A 

variety of statistical and machine-learning techniques can be employed to address this 

issue. Traditional time series methods such as Vector Autoregression (VAR) models 

[2], as well as advanced machine learning algorithms including Artificial Neural 

Networks (ANN) [3, 4], Multioutput Least Squares Support Vector Regression (MLS-

SVR) [5, 6], XGBoost [7], and Long Short-Term Memory (LSTM) [8, 9], offer poten-

tial solutions. Consequently, this study proposes a multivariate control chart method-

ology that leverages residuals from time series-based machine learning models to 

address the complexity of multivariate data [10, 11]. This research introduces a multi-

variate control chart approach that utilizes residuals derived from time series deep 

learning techniques to monitor and manage multivariate data effectively [12, 13]. 

Comprehensive water quality assessment necessitates the application of multivari-

ate control charts to simultaneously monitor multiple quality parameters. To address 

the inherent autocorrelation present in water quality time series data, this study pro-

poses a novel approach combining the Max-MCUSUM chart [14–16] with a Long 

Short-Term Memory (LSTM) model. The efficacy of this methodology was evaluated 

at the Ngagel II water treatment plant with the objective of guaranteeing the delivery 

of high-quality water, thereby contributing to public health and environmental sus-

tainability in Surabaya. 

This investigation employs a Max-MCUSUM control chart integrated with an 

LSTM residual model for the surveillance of water quality. The study aims to evalu-

ate the efficacy of this methodology in monitoring water quality parameters. The 

analysis is circumscribed to the calendar year 2022, utilizing hourly time-step inputs 

within the LSTM model for the examination of quality control data. Specific objec-

tives encompass the development and implementation of an LSTM model for the 

water production process, the optimization of the Max-MCUSUM control chart 

through LSTM residual integration to minimize false alarms, and the statistical as-

sessment of process capability to ensure adherence to established water quality stand-

ards. 



3 

2 Literature Review 

2.1 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a specialized variant of Recurrent 

Neural Networks (RNNs) designed to mitigate the vanishing gradient problem inher-

ent in standard RNN architectures when processing sequential data. By incorporating 

a sophisticated cell state regulated by input, forget, and output gates, LSTMs effec-

tively capture and maintain long-term dependencies. This architectural innovation 

empowers LSTMs to excel in tasks demanding the preservation of information over 

extended temporal intervals, such as time series forecasting and handwriting recogni-

tion [8]. 

2.2 Maximum Multivariate Cumulative Sum (Max-MCUSUM) Control Chart 

based on the Long Short-Term Memory (LSTM) residual  

A control chart is a fundamental tool in Statistical Process Control (SPC) employed to 

graphically represent process variability over time. By plotting sample means of a 

quality characteristic, it establishes a centerline indicative of the expected process 

average, flanked by upper and lower control limits. Excursions of sample means be-

yond these control limits signal the presence of anomalous variability sources, 

prompting investigative and corrective actions. Consistent application of control 

charts facilitates a systematic reduction in process variability [17]. 

The Cumulative Sum (CUSUM) control chart, introduced by Page in 1954 [18], is 

employed to detect subtle shifts in process mean or variance attributed to assignable 

causes. Thaga subsequently extended this to the Max-CUSUM control chart. For pro-

cesses exhibiting correlated quality characteristics, multivariate control charts such as 

Max-MCUSUM have been proposed to monitor both central tendency and dispersion. 

While Max-MCUSUM assumes independent, normally distributed data, it demon-

strates relative robustness to deviations from normality. However, autocorrelation in 

data can lead to an elevated false alarm rate, diminishing the chart's efficacy. To miti-

gate this, Long Short-Term Memory (LSTM) models can be leveraged to extract re-

siduals from the autocorrelated data, which are then incorporated into the Max-

MCUSUM control chart to enhance monitoring performance. 

𝑒𝑖 = 𝑦𝑖 − 𝑓(𝑦𝑓𝑖−1
, 𝑦𝑓𝑖−2

, 𝑦𝑓𝑖−𝑚
)                                 (1) 

Where 𝑒𝑖 is residual at time −𝑖, 𝑦𝑖 is actual value at time−𝑖 , 𝑦𝑓𝑖−1
, 𝑦𝑓𝑖−2

, 𝑦𝑓𝑖−𝑚
 is 

the value at the previous time with a distance of m time periods backward, 𝑓 is The 

function used to predict actual values. We need to create a random variable 𝑍𝑖that can 

represent changes in the data calculated based on the residual vector, namely: 

𝑍𝑖 =
(𝝁𝑒(𝑏)−𝝁𝑒(𝑔))𝑇𝚺𝑒(𝑔)

−1 (𝒆𝑖−𝝁𝑒(𝑔))

[(𝝁𝑒(𝑏)−𝝁𝑒(𝑔))
𝑇

𝚺𝑒(𝑔)
−1 (𝝁𝑒(𝑏)−𝝁𝑒(𝑔))]

1
2

                                     (2) 
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Where,  𝝁𝑒(𝑏) is Mean vector when the residual comes from the out-of-control 

limit (uncontrolled), 𝝁𝑒(𝑔) is Mean vector when the residual comes from the in-

control limit (controlled), 𝚺𝑒(𝑔) is Covariance matrix included (in-control) 

If 𝑍𝑖 do not follow a standard normal distribution, then 𝑍𝑖follows a normal distribu-

tion with a mean of λ. The non-centrality parameter λ can be calculated as in Equation 

3: 

𝜆 = [(𝝁𝑒(𝑏) − 𝝁𝑒(𝑔))𝑇𝚺𝑒(𝑔)
−1 (𝝁𝑒(𝑏) − 𝝁𝑒(𝑔))]

1

2                          (3) 

the vector experiences a shift in the covariance matrix Σ𝑒(𝑏), expressed by: 

𝑊𝑖 = Φ−1{𝐻[(𝒆𝑖 − 𝝁𝑒(𝑔))𝑇𝚺𝑒(𝑏)
−1 (𝒆𝑖 − 𝝁𝑒(𝑔)); 𝑚]}                       (4) 

where 𝛷(𝑧)  =  𝑃(𝑍 ≤  𝑧) with 𝑍 ∼  𝑁(0, 1). 𝐻(𝑥;  𝑚)  =  𝑃(𝑋 ≤  𝑥|𝑚) with 

𝑋 ∼  𝑋2
𝑚 and the function Φ−1 is the inverse of the cumulative distribution function 

(CDF) of the standard normal distribution can be expressed by. 

Φ(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫
1

√2𝜋
𝑒−

𝑡2

2 𝑑𝑡
𝑥

−∞
                                (5) 

If 𝑍𝑖 and 𝑊𝑖 are independent and follow a normal distribution. 

𝑀𝑟(𝑖) = 𝑚𝑎𝑥 [𝐶𝑟(𝑖), 𝑆𝑟(𝑖)]                                         (6) 

Where, 𝐶𝑟(𝑖) is transformation from random variable 𝑍𝑖, 𝑆𝑟(𝑖) is transformation from 

random variable 𝑊𝑖. Thus, 𝐶𝑟(𝑖)  and 𝑆𝑟(𝑖)can be expressed: 

𝐶𝑟(𝑖) = 𝑚𝑎𝑥[𝐶𝑟(𝑖)
+, 𝐶𝑟(𝑖)

−]                                            (7) 

𝐶𝑟(𝑖)
+ = 𝑚𝑎𝑥[0, 𝑍𝑖 − 𝑘 +  𝐶+

(𝑟)𝑖−1] 

𝐶𝑟(𝑖)
− = 𝑚𝑎𝑥[0, −𝑘 − 𝑍𝑖 +  𝐶−

(𝑟)𝑖−1] 

 

𝑆𝑟(𝑖) = 𝑚𝑎𝑥 [𝑆𝑟(𝑖)
+, 𝑆𝑟(𝑖)

−]                                           (7) 

𝑆𝑟(𝑖)
+ = 𝑚𝑎𝑥[0, 𝑊𝑖 − 𝑘 +  𝑆+

(𝑟)𝑖−1] 

𝑆𝑟(𝑖)
− = 𝑚𝑎𝑥[0, −𝑘 − 𝑊𝑖 +  𝑆−

(𝑟)𝑖−1] 

Max-MCUSUM in LSTM models compare the statistic to the upper control limit 

(UCL) when 𝑀𝑟(𝑖) ≥ 0, detecting out-of-control signals when M(i) exceeds the UCL. 

The UCL is estimated using the bootstrap method. 

𝑈𝐶𝐿 =  
1

𝑁′  ∑ 𝑀𝑙
(𝑟)(100(1−𝛼))

𝑁′

𝑙=1                                        (2.377) 

Where 𝑀𝑙
(100(1−𝛼)) =  𝑀𝑙

((1−𝛼)𝐵) and 𝑙 =  1, 2, . . . , 𝑁′ replication. 

3 Methodology 

3.1 Data Source 

This study employs secondary water quality data obtained from Surya Sembada Sura-

baya spanning the period from January 1, 2022, to December 31, 2022. The dataset is 

divided into two phases: Phase I (January 1 to July 31, 2022) and Phase II (August 1 

to December 31, 2022). Water samples were collected post-filtration and subsequent-

ly analyzed in a laboratory setting. Four water quality parameters were investigated: 

turbidity, pH, organic matter (measured as KMnO4 consumption), and residual chlo-

rine. 
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3.2 Research Variable 

The research variables employed in this study encompass four distinct quality charac-

teristics, as detailed in Table 1.  

Table 1. Research Variables 

Variables Explanation Unit Specification 

𝑦1 Turbidity NTU 0 − 1 
𝑦2 pH - 6.5 − 8.5 

𝑦3 
Organic Matter 

(MnO4) 
Mg/l 0 − 10 

𝑦4 
Chlorine Resid-

ual 
ppm 0.5 − 1 

3.3 Analysis Steps 

This study employs an LSTM residual-based Max-MCUSUM control chart to 

monitor water quality. The methodology comprises the following steps: 

 

1. Data Acquisition: Secondary water quality data encompassing turbidity, pH, 

organic matter (KMnO4), and chlorine residual were collected from Surya Sem-

bada Surabaya for the period of January 1 to December 31, 2022. 

2. Time Series Modeling: A Long Short-Term Memory (LSTM) neural network 

was constructed to model the time series behavior of the water quality parame-

ters. Data preprocessing, including scaling and splitting into training and testing 

sets, was performed prior to model development. Hyperparameter tuning was 

conducted to optimize model performance. 

3. Model Validation and Control Chart Implementation: The adequacy of the 

LSTM model was assessed through the Shapiro-Wilk test for normality and the 

Portmanteau test for autocorrelation. Subsequently, a Max-MCUSUM control 

chart was applied to the model residuals to monitor for process shifts. 

4. Conclusion and Recommendations: Based on the control chart analysis, con-

clusions regarding water quality stability were drawn and appropriate recommen-

dations for process improvement were formulated. 

4 Analysis and Discussion 

4.1 LSTM Modelling 

Figure 1 illustrates the time series plot of the studied parameters during Phase I 

(red) and Phase II (blue) from January 1 to December 31, 2022. Turbidity exhibited a 

declining trend from September to December, while Organic Matter (KMnO4) 

demonstrated sporadic increases throughout the year. pH measurements indicated an 

elevation in May followed by a decline in October. Residual Chlorine levels remained 
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relatively consistent with a minor reduction observed between August and October. 

 

    
(a)                                                                                 (b) 

    
(c)                                                                                   (d) 

Fig. 1. Time Series Plot of the Data of Quality Characteristics: 

(a) Turbidity, (b)pH, (c)Organic Matter (KMnO4), (d) Chlorine Residual 

 

Prior to autocorrelation analysis, standardization of the three quality characteristics 

was performed to account for disparate measurement units. Autocorrelation was eval-

uated through the application of Multivariate Cross-Correlation Function (MCCF) 

plots, as visualized in Figure 2 for each water quality parameter. The MCCF plots in 

Figure 2 unequivocally demonstrate the presence of significant autocorrelation in all 

four water quality parameters at the Ngagel II water treatment plant, indicating com-

plex interrelationships among these variables. 

 

 
Fig. 2. Multivariate Cross-Correlation Function of the Data of Quality Characteris-

tics: (a)Turbidity, (b)pH, (c)Organic Matter (KMnO4), (d) Chlorine Residual 

Long Short-Term Memory (LSTM) modeling was employed to address autocorre-

lation within Surya Sembada's production process at the Ngagel II water treatment 

plant. Model architecture and hyperparameters were meticulously optimized to mini-
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mize residual error. Phase-1 model configurations were subsequently applied to 

phase-2 data. Prior to LSTM modeling, input data underwent stationarity and scaling 

transformations. A comprehensive experimental design was implemented to identify 

optimal LSTM architecture and hyperparameters based on minimizing Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), 

as outlined in Table 2. To achieve optimal model fit, the training process was iterated 

for 250 epochs. The architecture and hyperparameters of the selected LSTM model 

are presented in Appendix 1. 
Table 2 Evaluation Metrics 

Evaluation Metric Value 

The Average of Mean Squared Error (MSE) 0.049 

The Average of Root Mean Squared Error (RMSE) 0.222 

The Average of Mean Absolute Error (MAE) 0.170 

4.1.1 LSTM Modelling for Phase I 

After modeling using LSTM in phase 1, the predicted values were compared with 

the actual data values, which can be seen in Figure 4.3. Figure 4.3 depicts the predict-

ed values of Chlorine Residual, Organic Matter (KMnO4), pH, and Turbidity from 

LSTM modeling, mirroring the pattern of actual data in phase I. This suggests the 

reliability of LSTM modeling as it captures similar data patterns. 

    
(a)                                                          (b) 

    
(c)                                                              (d) 

Fig. 2 Line Plot of Actual Data vs Predicted Data of the Quality Characteristics: (a) 

Turbidity, (b)pH, (c)Organic Matter (KMnO4), (d) Chlorine Residual in Phase I 
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4.1.2 LSTM Modelling for Phase II 

LSTM modeling in Phase II employs identical architecture and hyperparameters as in 

Phase I, covering water production data from August 1 to December 31, 2022. 

 
(a)                                                                                     (b) 

 
(c)                                                                                       (d) 

Fig. 3. Line Plot of Actual Data vs Predicted Data of the Quality Characteristics: 

(a) Turbidity, (b)pH, (c)Organic Matter (KMnO4), (d) Chlorine Residual in Phase II 

 

Figure 3 depicts a comparative analysis of predicted and actual values for Chlorine 

Residual, KMnO4, and turbidity. While Chlorine Residual and KMnO4 exhibit com-

parable trends, a systematic overestimation of Chlorine Residual and underestimation 

of turbidity is evident. The observed discrepancies in the time series patterns of all 

four quality characteristics during the phase II period necessitate a more rigorous 

investigation using a control chart methodology. To this end, a Max-MCUSUM con-

trol chart based on LSTM model residuals is employed. 

4.2 Max-MCUSUM Control Chart Based on LSTM Model Residual  

During the initial phase of water production, traditional quality control methods 

aimed to maintain process stability within predefined control limits. However, as 

illustrated in Figure 4, all data points exhibited exceedance of these limits due to the 

presence of unaccounted autocorrelation, resulting in an elevated false alarm rate. To 

mitigate this issue, residual data derived from a phase I LSTM model were incorpo-

rated into a Max-MCUSUM control chart. This multivariate control chart, capable of 
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simultaneously monitoring both process mean and variance, demonstrated superior 

sensitivity in detecting subtle process shifts, thereby improving overall process con-

trol. 

  
(a)                                                                                       (b) 

Fig. 4 Control Chart using the Actual Data: (a) MEWMA Control Chart (b) Max 

M-CUSUM Control Chart 

 

The Max-MCUSUM control chart integrates CUSUM and MCUSUM methodologies 

to provide simultaneous monitoring of process mean and variance. Employing exclu-

sively upper control limits, the chart relies on bootstrap resampling to determine con-

trol limits, evaluated using Average Run Length (ARL) criteria. An ARL0 of 370 was 

achieved with a significance level (α) of 0.00273. In the initial phase (Phase I), the 

Max-MCUSUM chart is applied to LSTM model residuals to establish process control 

and determine initial control limits. These limits serve as reference points for subse-

quent monitoring (Phase II), where the bootstrap method is used for estimation. 

 

4.2.1 Choosing the optimal reference value k. 

The reference value, k, of 0 < 𝑘 ≤ 1.5, chosen for its sensitivity in detecting out-of-

control points. Actual observation data surpassing specification limits are utilized to 

test various k values and determine the optimal one. 

 

 
Table 3. Number of Out-of-Control Points for Residual Data of Max-MCUSUM Control 

Chart 

k UCL Number of Out-of-Control Points 

0.25 91.2310 12 

0.50 63.2456 15 

0.75 40.6152 12 

1.00 22.2152 12 

1.25 11.2036 14 

1.50 6.5401 11 

 

Table 3 demonstrates that a k-value of 0.5 optimizes the control chart's perfor-

mance, accurately identifying 15 data points as out-of-control, which closely align 

with actual instances of specification exceedance.  
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4.2.2 Max MCUSUM chart for Phase I 

Based on the obtained reference value k, the optimal hyper-parameter, the control 

limit utilized in this study is 5. 5655. The following are the results obtained after pro-

cessing using the Max-MCUSUM control chart in phase I. 

 

 
(a)                                                                                           (b) 

 

Fig. 5 Max-MCUSUM Control Chart for Phase I Data: a) Initial chart b) Revised 

chart 

 

Figure 5 (a) illustrates multiple data points exceeding the upper control limit, sug-

gesting a state of process instability. The Max-MCUSUM control chart, implemented 

in Phase 1 with a reference value k of 0.5, provides statistical confirmation of an out-

of-control process for both methodologies under evaluation. These findings indicate 

the presence of assignable causes of variation, necessitating in-depth diagnostic anal-

ysis to identify and eliminate root causes. Subsequent replacement of anomalous ob-

servations with the target value yielded consistent results from the Max-MCUSUM 

chart, maintaining a state of statistical non-control as evidenced by multiple out-of-

control points in Figure 5 (b). 

 

4.2.3 Max MCUSUM chart for Phase II 

A Phase II quality control analysis was conducted on Surya Sembada's water quali-

ty data spanning August to December 2022. A Max-MCUSUM control chart, in-

formed by LSTM-derived Phase I parameters, was employed for the evaluation. 

 
Fig. 6 Max-MCUSUM Control Chart Based on Bootstrap for Phase II Data 
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Figure 6 presents a Phase II Max-MCUSUM control chart (k = 0.5) for the water pro-

duction process at the water treatment plant. A notable departure from statistical con-

trol is evident from August 9, 2022, as numerous data points transgress the estab-

lished control limits. This anomalous pattern strongly indicates a shift in the mean of 

the water production process, signifying a state of instability. The occurrence of this 

out-of-control signal coincides with the onset of the rainy season in Surabaya during 

that period, suggesting a potential correlation between meteorological conditions and 

process variability. Further investigation is warranted to elucidate the precise mecha-

nisms underlying this relationship and to develop strategies for mitigating the impact 

of rainfall on water production 

5 Conclusion and Suggestions 

This study introduces a novel hybrid monitoring framework that integrates a Long 

Short-Term Memory (LSTM) model with a Max-MCUSUM control chart for the 

rigorous surveillance of water quality at the Surya Sembada water treatment plant in 

Surabaya. The LSTM model, optimized through minimization of Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE), effec-

tively mitigated autocorrelation in the Phase I data, enabling the establishment of 

statistical control using the Max-MCUSUM chart with a k value of 0.5. Nevertheless, 

the Phase II analysis revealed 144 data points exceeding the control limits, signifying 

a process deviation from the established state of control. Comparative assessments 

demonstrated the superior sensitivity of the Max-MCUSUM chart to process shifts 

relative to conventional control charting techniques. To further enhance the proposed 

methodology, future research should explore the potential of advanced time series 

models, such as Transformers, Generative Adversarial Networks [19], or Temporal 

Convolutional Networks [20], to address autocorrelation challenges more comprehen-

sively. Also, several robust methods can also be applied to improve the accuracy of 

monitoring process [21, 22].  
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Appendix 1. Architecture and Hyperparameters of LSTM Model 

Layer Hyperparameter 

LSTM Layer 1 LSTM Units: 512 

Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

Batch Normalization 

Dropout 

- 

Rate: 0.2 

LSTM Units:256 

Skip Connection 1 Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units:256 

Skip Connection 1 Residual Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

Skip Connection 2 LSTM Units: 128 

Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 128 

Skip Connection 2 Residual Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 64 

Skip Connection 3 Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 64 

Skip Connection 3 Residual Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 32 

Skip Connection 4 Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 32 

Skip Connection 4 Residual Recurrent Dropout: 0.2 

Kernel Regularizer: l2(0.001) 

LSTM Units: 32 

Final LSTM Layer Recurrent Dropout: 0.2 

Kernel Regularizer: l2 (0.001) 

Batch Normalization 

Dropout 

- 

Rate: 0.2 

LSTM Units: 256 

Dense Layer 1 Activation: leaky_relu 

Batch Normalization - 

LSTM Units: 128 

Dense Layer 2 Activation: leaky_relu 

Batch Normalization - 

LSTM Units: 64 

Dense Layer 3 Activation: leaky_relu 

Batch Normalization - 
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Layer Hyperparameter 

LSTM Units: 32 

Dense Layer 4 Activation: swish 

Batch Normalization - 

Final Dense Layer Activation: linear 

 


