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Abstract. Automatic estimation of students’ engagement provides real-time 

feedback to the teachers in online courses. Although some deep learning methods 

have shown success in engagement estimation, most of them are developed based 

on convolutional neural networks (CNNs), which fail to capture long-range spa-

tial and temporal dependencies in video data. Even when both temporal and spa-

tial representations are extracted, they are not fully utilized, decreasing the accu-

racy of engagement estimation. To address these issues, we propose a novel Mix-

ture-of-Experts (MoE) method that effectively ensembles spatial and temporal 

representations. Specifically, we introduce a Routing Mixture-of-Experts  

(RMoE) method designed to capture comprehensive and discriminative spatio-

temporal representations. The method uses a routing mechanism to dynamically 

select the most relevant experts for a given input, ensuring accurately capture 

both spatial and temporal representations. We evaluated the effectiveness of our 

model using the Dataset for Affective States in E-Environments (DAiSEE). Ex-

perimental results show that our model significantly outperforms several state-

of-the-art methods, highlighting its potential to improve the accuracy of student 

engagement estimation in online learning environments.  

Keywords: Online Courses, Engagement Estimation, Ensemble Learning, Spa-

tiotemporal Representations 

1 Introduction 

With the rapid expansion of education and electronic learning (e-learning) [1], main-

taining student engagement in online courses has become a great challenge for educa-

tors [2]. Previous studies have indicated that many students could not immerge them-

selves in online courses [3]. Consequently, automatic engagement estimation has be-

come essential, as students’ engagement levels enables educators to enhance learning 

efficiency [4]. Engagement is defined as the state of being either immersed or not im-

mersed in a task [5]. Based on the learner's interest and attentiveness[6], engagement 

can be classified into four levels: very low, low, high, and very high  [7]. 

Recently, engagement estimation has become a research hotspot across various 

fields [5]. Its goal is to directly monitor students and maintain a high level of 
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engagement in online courses. Multiple modalities have been utilized for engagement 

estimation including images[8, 9], videos [10-12], audio [13], and Electrocardiogram 

(ECG) [14]. Due to its ubiquitous, cost-effective, and non-intrusive nature [4], com-

puter vision (CV) has shown significant potential in engagement estimation [15]. CV 

methods can be divided into spatial representation-based and spatiotemporal represen-

tation-based methods. The former focuses on individual images, as spatial information 

has proven reliable for predicting levels of engagement. For example, Gupta et al. [8] 

employed Inception-v3 to predict various affective states based on single frames in vid-

eos, while Batra et al. [9] demonstrated that ResNet-18 outperformed DenseNet-121 

and MobileNet-v1 in single-frame engagement estimation. 

The limitation of the above methods is that they are developed based on static images 

or isolated frames. However, engagement focuses on spatiotemporal affective states 

and varies over time, and it cannot be completely described by static images or isolated 

frames. Some researcher [16] argue that assessing students’ engagement requires eval-

uating their status at finer time intervals, taking into account that the temporal correla-

tions between frames. Therefore, it is more appropriate to incorporate temporal infor-

mation for more accurate engagement estimation. Representative network backbones 

in this category includes Convolutional 3D (C3D) [11], Long-term Recurrent Convo-

lutional Networks (LRCN) [17] and Inflated 3D (I3D) [10]. For instance, Geng et al. 

[11] utilized a C3D classifier to classify engagement levels; Zhang et al. [10] introduced 

a modified Inflated 3D (I3D) model to estimate engagement levels; Abedi et al. [12] 

proposed a hybrid network ResTCN that combined Residual Network (ResNet) and 

Temporal Convolutional Network (TCN). However, these methods are developed 

based on convolutional neural networks (CNNs) that primarily rely on convolutional 

filters to extract local representation from videos, limiting their ability to capture long-

range spatial and temporal dependencies. In addition, these methods predominantly fo-

cus on temporal information without effectively integrating both spatial and temporal 

data for engagement estimation. 

To this end, we propose a Routing Mixture-of-Experts (RMoE) method based on 

adaptive mixtures of local experts [18] that aims to effectively learn discriminative and 

ensembled spatiotemporal representations for engagement estimation. The main con-

tributions of this work are as follows: 

1) We propose a RMoE that encodes spatial and temporal representations. It not only 

incorporates temporal information based on spatial information, but also effectively 

integrates both spatial and temporal information for more accurate engagement estima-

tion. 

2) We introduce Transformers as spatial and temporal encoders to handle the long-

range spatial and temporal dependencies in videos. 

The remainder of the paper is organized as follows: Section 2 proposes RMoE, high-

lighting the advantages and innovations of our method; Section 3 presents the experi-

mental results, which includes information on the dataset, comparison experiments, and 

ablation studies. Section 4 draws the conclusion that provides a summary of the key 

insights from our research. 
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2 Method 

In this section, we propose a RMoE method that learns ensembled spatiotemporal 

representations through spatial and temporal encoders. This scheme differs from previ-

ous CNNs-based methods. In the following sections, we first illustrate the process of 

frame uniformity and then introduce our network. 

 

Fig. 1. Data preprocessing pipeline. T frames are uniformly sampled from the video clip, with 

each 2D frame independently embedded. 

2.1 Data preprocessing  

The video clips used in this study are denoted as 𝑿 ∈  ℝ𝑇×𝐻×𝑊×𝐶, where 𝑇 is the 

number of the video frames, 𝐻 ×  𝑊  is the resolution of a single frame, and 𝐶  is the 

number of channels. Each video frame at time t is cropped into a sequence of 𝑃 × 𝑃 

patches, i.e. 𝑿𝑡
𝑝
= [𝒙𝑡

𝑝 (1)
;… 𝒙𝑡 ,

𝑝(𝑁)]  ∈  ℝ𝑁×(𝑃2𝐶), for t = 1,2,……T, where 𝑁 = 
𝐻𝑊

𝑃2
 is 

the number of patches. Fig.1. shows the data preprocessing pipeline. 

2.2 RMoE framework 

In this section, we propose a RMoE framework that includes four components: the 

token embedding module, the expert networks, the Routing network, and the tower net-

work. Fig.2 shows the architecture of the proposed Routing Mixture-of-Expert. 
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Fig. 2. Architecture of Routing Mixture-of-Experts. The model includes token embedding mod-

ule, expert networks, the routing network and the tower network. 

Given an input video, the token embedding module transform s the input data into 

token embeddings. The expert networks then extract the spatial representations from 

the token embeddings and the routing network selects the output of a subset of experts 

for subsequent fusion of spatiotemporal representations. Finally, the tower network ex-

tracts spatiotemporal representations from a sequence of spatial representations across 

all time points and predicts the results using an MLP head. 

Token embedding module.  

The token embedding module is used to transform the input patches into token em-

beddings by a trainable linear transformation. Given a sequence of patches representing 

the corresponding flattened patches of the video frame 𝑿𝑡
⬚, these patches are projected 

into a D-dimensional representation space using a trainable linear transformation 𝑬𝑆 ∈

ℝ(𝑃2𝐶)×𝐷. This transformation ensures that the expert networks can process the patch 

embeddings with a consistent size across all layers. 

For the video frame at time point t, the sequence of the patch embeddings is denoted 

as follows: 

𝒁𝑡
𝑝
= [𝒛𝑪𝑳𝑺;𝒙𝑡

𝑝 (1)
𝑬𝑆;⋯ ; 𝒙𝑡

𝑝(𝑁)
𝑬𝑆] + 𝑷𝑡

𝑆 (1) 

where 𝒛𝑪𝑳𝑺 ∈ ℝ
𝐷  is a  learnable position embedding to preserve the spatial information 

of each video frame in the video, and 𝑷𝑡
𝑆 ∈ ℝ(𝑁+1)×𝐷 is a  learnable spatial positional 

embedding added to the token embeddings to maintain spatial information.  

Expert networks.  

The expert network is designed to learn the spatial representations from the token 

embeddings generated by the token embedding module. The RMoE framework 
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includes 𝑀  expert networks, each including T spatial Transformer encoders. Each en-

coder is responsible for generating a spatial representation for an individual video 

frame. The architecture features alternating layers of multi-headed self-attention (MSA) 

and feed-forward network (FFN) blocks. Layer Normalization (LN) [19] is imple-

mented to accelerate convergence of the training process, and the residual connections 

are employed to enhance the information flow for improved performance [20]. The 

FFN consists of two layers, both using Gaussian Error Linear Unit (GELU) as the acti-

vation function. Fig.3 shows the architecture of an expert network. 

 

Fig. 3. An illustration that an expert network learns the spatial representations. 

Consider 𝒁𝑡
𝑝

 as a  sequence of patch embeddings input into the 𝑡-th spatial encoder 

within an expert network, producing a series of spatial embedding 𝒁𝑚
𝑆  for 𝑚 =

1,⋯ ,𝑀. Specifically, each spatial encoder in the expert network captures the interac-

tion between the token embeddings extracted from video frame at the same time point, 

thereby generating 𝑇 frame-level representations 𝒁𝑚 ,𝑡
𝑆 for 𝑡 = 1,⋯ , 𝑇. To simplify the 

notation, we denote the output of each expert as 𝒁𝑚
𝑠 ∈ ℝ𝑇×𝐷, Given the outputs of M 

experts, we concatenate them as Eq. (2): 

𝒁𝑆 =  [𝒁1
𝑠 , ; 𝒁2

𝑠 ;… ; 𝒁𝑀
𝑠 ] (2) 

Routing network.  

The Routing network “selects” several experts for subsequent fusion of spatiotem-

poral representations. This allows the network to flexibly obtain the most effective rep-

resentations from the spatial encoders. Specifically, a  probability distribution over the 

experts is generated by the routing network based on token embeddings 𝒁𝑡
𝑝

 generated 
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from the input patches 𝑿𝑡
𝑝

 by the token embedding module. The final output is a  

weighted combination of the outputs of all experts: 

𝑓({𝒁𝑡
𝑝}) = ∑ 𝑔({𝒁𝑡

𝑝})
𝑚
𝑓𝑚({𝒁𝑡

𝑝})
𝑀

𝑚=1

(3) 

where 𝑅(∙) represents the routing network, 𝑅({𝒁𝑡
𝑝})

𝑚
 denotes the m-th logit of the 𝑔(∙

) output, 𝑓𝑚(∙) is the m-th expert network, and 𝑀 is the number of experts. 

In this work, we formulate the routing network as a linear transformation of the input 

through the Softmax function: 

𝑅(𝑿) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝑟𝑿) (4) 

where 𝑾𝑟  ∈  ℝ
𝑀×𝐷  is a  trainable matrix, 𝑿 is the input sequence of patches; 𝑀 and 

𝐷 are the expert number and representation dimension, respectively. 

Tower network.  

The tower network models the interactions base on T-time-step spatial representa-

tions and outputs the final classification results, i.e. 

𝒚 = ℎ (𝑓({𝒁𝑡
𝑝})) (5) 

where 𝒁𝑡
𝑝

 are token embeddings, ℎ(∙)  represents the tower network, and 𝑓(∙)  is the 

routing network computed using Eq. (4). 

The tower network includes a temporal Transformer encoder and a classification 

head with K output nodes. The temporal encoder is designed to capture temporal inter-

actions within the token embeddings of length T. The output of the 𝑚-th expert 𝒁𝑚
𝑠  is 

expressed as: 

𝒁𝑚
𝑠 = [𝒛𝑪𝑳𝑺; 𝒛𝑚,1

𝑠 ;  𝒛𝑚,2
𝑠 ;⋯ ; 𝒛𝑚,𝑇

𝑠 ] + 𝑷𝑻 (6) 

where 𝑚 = 1,⋯ ,𝑀, and 𝑷𝑻 ∈ ℝ(𝑇+1)×𝐷  is a  learnable spatiotemporal embedding to 

preserve spatiotemporal information. The spatial tokens output by the expert networks 

are ensembled by the routing network and subsequently processed  through a temporal 

Transformer encoder. After the spatiotemporal representations are ensembled, a classi-

fication head is employed to perform  K-class classification. Each output node of the 

classification head corresponds to a specific engagement level.  

2.3 Optimization 

The overall architecture is optimized using the focal loss [21], which is defined as 

follows: 

ℒ = −∑∑𝑦𝑖𝑘𝛼𝑖𝑘(1 − �̂�𝑖𝑘)
𝛾 log 𝑦𝑖𝑘

𝐾

𝑘=1

𝑁

𝑖 =1

(7) 
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where 𝑦𝑖𝑘 = {0,1} is the true label indicating whether sample 𝑖  belongs to the 𝑘 -th 

class, and it takes 0 when sample 𝑖 does not belong to the 𝑘-th class, and 𝑦𝑖𝑘 ∈ (0,1) is 

the predicted probability for the 𝑘-th class of sample 𝑖. To address the class imbalance 

issue, 𝛼𝑖𝑘  is included to denote the proportion of 𝑘-th class in the loss function. Specif-

ically, 𝛼𝑖𝑘  is set to the inverse of the number of classes, ensuring that each class con-

tributes equally to the loss function, regardless of its representation in the dataset.  How-

ever, this alone does not differentiate between easy and hard samples. Therefore, a  

modulation factor (1 − 𝑦𝑖𝑘)
𝛾 is added, where 𝛾 ≥ 0 is a  tunable parameter that reduces 

the influence of easy samples, while enhancing the contribution of hard samples, 

thereby focusing the training on difficult instances. 

3 Experiments 

3.1 Details of experiments 

Dataset.  

The DAiSEE dataset [8] is used in this study. It includes 9,068 videos taken from 

112 students in online courses. Four types of emotional states such as boredom, confu-

sion, engagement, and frustration are used to describe the students. Since this study 

focuses on student engagement, we use the engagement as the labels (0: very low, 1: 

low, 2: high, 3: very high). Each video lasts a few seconds, with a frame rate of 30 fps 

and a resolution of 640×480 pixels. Table 1 provides the details of the training, valida-

tion, and test sets used in our study. Fig.4 shows 16 video frames of four students par-

ticipating in online courses, with their engagement levels ranging from 0 to 3, respec-

tively, from top to bottom. 

Table 1. The details of the training, validation, and test sets in the DAiSEE dataset. 

Levels 
0 

(very low) 
1 

(low) 
2 

(high) 
3 

(very high) 

Training 34 213 2617 2494 

Validation 23 143 813 450 

Testing 4 84 882 814 

Total 61 440 4312 3758 
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Fig. 4. Four students participating in online courses, with their engagement levels ranging from 

0 to 3, respectively, from top to bottom. 

Experiment settings.  

In alignment with previous research methodologies, the training and validation set 

videos are used to develop and fine-tune the architecture, while a separate set of 1,784 

test videos is utilized for the final performance evaluation. This approach ensures that 

the model's performance is assessed on unseen data, providing a robust measure of its 

generalization capability.  

One of the challenges encountered in this study is the significant class imbalance 

present in the dataset. In scenarios where certain classes are heavily underrepresented, 

traditional evaluation metrics like accuracy can be misleading, as they tend to favo r the 

majority class. For instance, a model could achieve high accuracy by simply predicting 

the majority class in most cases, despite performing poorly on the minority class. To 

address this issue, we employ evaluation metrics specifically designed to handle imbal-

anced classification tasks, which offer a more accurate reflection of the model's perfor-

mance across all classes.  

The key metrics used in this evaluation are Precision, Recall, the macro F1 Score 

(F1-macro), and the weighted F1 Score (F1-weighted). These metrics provide a com-

prehensive understanding of the model’s ability to correctly identify each class. Let TP, 

TN, FP, and FN denote the number of true positives, true negatives, false positives, and 

false negatives, respectively. Precision, which measures the proportion of correctly 

identified positive instances out of all instances predicted as positive, defined as 
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TP/(FP+TP). Recall, which measures the proportion of actual positive instances that 

were correctly identified by the model, is defined as TP/(TP+FN). The macro F1 Score 

(F1-macro) and weighted F1 Score (F1-weighted) [22] are computed accordingly: 

{
  
 

  
 𝐹1 − 𝑚𝑎𝑐𝑟𝑜 =

∑ 𝐹1𝑖  
𝑁
𝑖=1

𝑁

𝐹1 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
∑ 𝐹1𝑖  × 𝑤𝑖
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  ×  𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙

(8) 

In addition to the F1 scores, the Area Under the Curve (AUC) was also employed as a 

key evaluation metric [23, 24]. The model was trained on the training and validation 

sets for 100 epochs, and the weights yielding the best AUC were used for testing on the 

test set. 

3.2 Comparison with State-of-the-Art methods 

In this subsection, we compare the classification performance of RMoE with classi-

cal deep learning methods, specifically CNN-based and transformer-based methods. 

CNN-based methods include C3D [25], I3D [26], and ResTCN [27], where raw frames 

of videos are used for engagement estimation. Transformer-based methods include 

TimeSformer [27], ViViT [28] and video swin transformer [29], involve cropping video 

into patches before processing. Although these methods are not specifically designed 

for engagement estimation, they are popular computer vision models applicable to this 

task. 

Table 2. Results (%) of the proposed and other classical methods. 

Methods F1-macro F1-weighted AUC 

ResTCN [12] 23.05 46.01 57.17 

C3D [25] 24.16 46.45 57.34 

I3D [26] 22.95 41.08 55.75 

TimeSformer [27] 19.91 38.87 54.13 

ViViT [28] 16.50 32.54 54.63 

Video Swin Trans-
former[29]  

21.46 42.06 55.14 

RMoE (Ours) 26.4 49.2 60.44 

 

As shown in Table 2, our method consistently demonstrates superior performance, 

surpassing all competing models in F1-macro, F1-weighted, and AUC metrics. Com-

pared to traditional convolutional methods such as ResTCN, C3D, and I3D, our method 

shows significant average improvements. It also outperforms transformer-based 
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methods like TimeSformer, ViViT, and Video Swin Transformer. Overall, the proposed 

RMoE excels over both convolutional and transformer-based methods across all eval-

uated metrics. 

3.3 Ablation Study 

To evalute the contribution of each element within the RMoE framework for engage-

ment estimation, we developed the following RMoE variants for comparative analysis: 

RMoE w/ ResNet: In this variant, the ResNet [30] is used as the spatial encoder, is 

which is designed to capture intricate spatial representations through deep residual 

learning. 

RMoE w/ TCN: TCN is effective in handling sequential data and modeling long-

range dependencies This variant leverage TCN [31] as the temporal encoder. 

RMoE w/ LSTM: This variant incorporates LSTM [32] as the temporal encoder, 

which is adept at processing sequences by retaining long-term dependencies 

RMoE w/o transformer encoder: This variant excludes transformer encoder, in-

stead utilizing ResNet as spatial encoder and TCN as temporal encoder. As a result, the 

variant is equal to ResTCN. 

RMoE w/o MoE framework: This variant does not utilize our proposed the RMoE 

framework, and just use a spatial encoder and a temporal encoder, both of which are 

transformer encoder. The variant is equal to ViViT. 

Table 3. Results (%) of the proposed method and ablation experiments 

Variants F1-macro F1-weighted AUC 

RMoE w/ ResNet 23.98 41.35 54.45 

RMoE w/ TCN 24.26 45.68 55.4 

RMoE w/ LSTM 24.9 45.68 56.59 

RMoE w/o transformer encoder 23.05 46.01 57.17 

RMoE w/o MoE framework 16.50 32.54 54.63 

RMoE 26.4 49.2 60.44 

 

As shown in Table 3, the proposed RMoE framework achieves the highest perfor-

mance across all evaluation metrics, outperforming all other variants. The results indi-

cate that the variants employing ResNet, TCN, and LSTM as encoder perform poorly 

across all metrics due to their limitations in capturing long-term dependencies. There-

fore, RMoE w/ ResNet, RMoE w/ TCN, and RMoE w/ LSTM exhibit poor perfor-

mance. These observations motivate us to integrate the transformer encoder in our 

method, as its effectively address these limitations by capturing both spatial and tem-

poral dependencies with greater accuracy. Consequently, the integration of the Trans-

former within the RMoE framework leads to superior engagement estimation, as evi-

denced by the significant improvements in F1-macro, F1-weighted, and AUC scores. 
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4 Conclusion 

Most deep models for engagement estimation are developed based on CNNs, which 

fail to provide long-range spatial and temporal dependencies. To this end, we propose 

a novel ensemble learning method RMoE which ensembles multiple spatial encoders 

and one temporal encoder to generate more discriminative spatiotemporal representa-

tions, ultimately aiming at more accurate engagement estimation. In addition, Trans-

former is introduced as spatial and temporal encoders to capture more discriminative 

representations for engagement estimation. We evaluate the RMoE method on the 

DAiSEE dataset and compare its performance with several popular methods. The ex-

perimental results indicate that our method outperform these methods.  

This study provides a promising solution to the challenges of maintaining and as-

sessing student engagement on digital education platforms. Future work will explore 

further refinements of the model and its application to other domains where engagement 

estimation is critical.  
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