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INTRODUCTION
In recent year, autonomy has been widely introduced
into surgical robotic systems to assist surgeons to carry
out complex tasks reducing the workload during surgical
operation [1]. Most of the existing methods normally
rely on learning from demonstration [2], which re-
quires a collection of Minimally Invasive Surgery (MIS)
manoeuvres from expert surgeons. However, collecting
such a dataset to regress a template trajectory can be
tedious and may induce significant burdens to the expert
surgeons.
In this paper, we propose a semi-autonomous control
framework for robotic surgery and evaluate this frame-
work in a simulated environment. We applied deep
reinforcement learning methods to train an agent for au-
tonomous control, which includes simple but repetitive
manoeuvres. Compared to learning from demonstration,
deep reinforcement learning can learn a new policy
by altering the goal via modifying the reward function
instead of collecting new dataset for a new goal. In
addition to the autonomous control, we also created a
handheld controller for manual precision control. The
user can seamlessly switch to manual control at any time
by moving the handheld controller. Finally, our method
was evaluated in a customized simulated environment
to demonstrate its efficiency compared to full manual
control.

MATERIALS AND METHODS
The customized simulator is developed based on Asyn-
chronous Multi-Body Framework (AMBF) [3] as shown
in Fig.1 (a). The aim is to implement semi-autonomous
control for the peg transfer task. The task is segmented
into two parts, automatic coarse control and manual
override precision control. The coarse control includes
controlling the gripper to approach the peg and modify
its orientation to an appropriate pose for a grasp. The
precision control includes fine-tuning the gripper’s ori-
entation, grasping and transferring the peg. The control
flow chart is shown in Fig.1 (b). For training an agent
to operate in the simulator with deep reinforcement
learning methods, we built an environment via Robot
Operating System (ROS). With the interface, the envi-
ronment can feedback reward, image frame and infor-
mation telling whether the termination state is reached.

Fig. 1 The illustration of the evaluation task(a), the
control flow chart(b), the final frame of episodes with
different initialization (c).

Double Deep Q Network (DDQN) [4] was used to
optimize the agent for automating the coarse control.
In addition, a handheld controller was developed for
the user to override the system and carry out precision
control.
Coarse Control. For the coarse control, we considered
it as a Markov Decision Process defined by a tuple
{𝑆, 𝐴, 𝑇, 𝑅, 𝛾} which represents state space, action
space, transition probability, reward function and
discount factor. In this experiment, as it was visual-
based, the agent only received an image frame
after taking a step without knowing the actual state
information. visual perception offers the agent the
potential of inferring the varying target state. In this
experiment, we clipped the frame to the region of
interest to reduce the computation load and then
stacked four consecutive frames as the input to the deep
neural network, so that it can infer the actual state. We
would like to hold the end-effector at a consistent height
since we want to avoid the danger of the end-effector
colliding with other objects. The action space was
{𝑑𝑥, 𝑑𝑦, 𝑑𝜙}, the position movement along 𝑥 and 𝑦 axis
in Cartesian space and the roll angle of the end-effector
in Euler space. The action space was discretized with a
precision of 6𝑚𝑚, 8𝑚𝑚, 10𝑟𝑎𝑑𝑠 respectively with ranges
[−6𝑚𝑚, 6𝑚𝑚], [−8𝑚𝑚, 8𝑚𝑚], [−10𝑟𝑎𝑑𝑠, 10𝑟𝑎𝑑𝑠].
Narrowing the action space by discretization can
bring faster convergence and save training time and
computation. To encourage the agent to approach the
target, and modify its orientation when the distance
𝑑 is less than the threshold 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 of 10𝑚𝑚 , the
reward function was defined as shown in Equation 1,



TABLE I Evaluation Results

Manual Semi-autonomous
𝑀 329mm 136mm
𝑇 94s 76s

where 𝑑𝑡 , △𝜃𝑡 refer to the distance to the target and
the deviation to the desired orientation angle which is
perpendicular to the closest side of the target at time
step 𝑡 respectively. The discount factor 𝛾 was set as
0.95.

𝑟𝑡+1 =

{
(𝑑𝑡 − 𝑑𝑡+1) |𝑑𝑡 − 𝑑𝑡+1 |, if 𝑑𝑡+1 > 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(△𝜃𝑡 − △𝜃𝑡+1) |△𝜃𝑡 − △𝜃𝑡+1 |, otherwise
(1)

DDQN was used to optimize the objective 𝐽𝜃 =∑𝑇−1
𝑡=0 𝛾𝑡𝑟𝑡+1. The action value update equation is shown

as following, where 𝑎∗
𝑡+1 = arg max𝑎𝑡+1 𝑄(𝑠𝑡+1, 𝑎𝑡+1 |𝜃).

𝑄(𝑠𝑡 , 𝑎𝑡 |𝜃) = 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) + 𝛾𝑄(𝑠𝑡+1, 𝑎
∗
𝑡+1 |𝜃

′) (2)

The decoupling of the selection of the best action and
the action value estimation of next state can reduce over-
estimation and therefore stabilize the training process. In
addition, the use of target network 𝜃 ′ can further stabilize
the training [5].
Precise Control. For the manual override precision con-
trol, we designed and developed a handheld controller
as shown in Fig.2 (a). A depth camera was used to
track the 3-D position of the tooltip of the 3-D printed
handheld controller using library OpenCv, and an IMU
sensor was attached at the end of the controller to track
its 3-D orientation. Then, the pose was mapped onto the
gripper in the simulator for the manual override control.
In addition, a footpedal was used to control the clutch
of the gripper.

RESULTS
The training of the agent took around 150 episodes to
reach the convergence, as shown in Fig.2 (c). In addition,
after the convergence, the steps required to complete an
episode also converged indicating that it has learned a
stable and efficient policy as shown in Fig.2 (d). The
final frames of episodes with different initialized target
positions are shown as Fig.1 (c). For all three different
target positions, the agent can successfully control the
gripper to approach the target and modify its orientation
to an appropriate position for a grasp.
As for the manual override control, we evaluated the
correspondence between the mapped gripper trajectory
and the controller trajectory qualitatively as shown in
Fig.2 (b). It indicates that the gripper trajectory can
correspond to the controller trajectory.
We have conducted a user study to validate the proposed
framework. The evaluation task is illustrated in Fig.1 (a).
First, the gripper needs to grasp the target at position
1 and transfer the target to position 2. After that, the
gripper is reset to a position within region 𝐴. The
process is repeated to transfer the target from position

Fig. 2 The setup for manual override control (a), the
qualitative results (b): gripper trajectory (red), controller
trajectory (blue), episode vs. episode return (c), episode
vs. episode length (d).

2 to position 3 and from position 3 to position 1.
Participants were asked to carry out this procedure for
9 times. The average controller travel length 𝑀 and task
completion time 𝑇 were recorded for evaluation. The
evaluation results are shown on Table I. It indicated
that with the proposed framework, the travel length was
reduced by around 58.7% and the completion time was
reduced by around 19.1%.

DISCUSSION
In this paper, we proposed a deep reinforcement learning
based semi-autonomous control framework. It uses the
DDQN to implement the automatic coarse control while
the user only need to focus on fine control and make the
decision at critical points. The user study showed that
the method can reduce the controller travel length by
a great margin and the completion time as well. This
demonstrates the potential of the proposed method in
automating repetitive tasks and reducing the cognitive
loads on the surgeons in MIS operations. However, the
reduction margin of the completion time was not as high
as expected and this was because when starting the fine
control after the coarse control phase, the user usually
needed to identify the relative pose of the end-effector to
the target by moving the controller slightly. Thus, future
work includes enabling seamless collaborative control
by offering visual or force feedback. In addition, further
work will be carried out on transferring the learned
policy to the da Vinci surgical Robotic platform.
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