
EasyChair Preprint
№ 15785

Divide and Conquer: a Compositional Approach
to Game-Theoretic Security

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain
and Michael Rawson

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 30, 2025

Divide and Conquer:
A Compositional Approach to Game-Theoretic Security

Ivana Bocevska
TU Wien

Vienna, Austria
ivana.bocevska@tuwien.ac.at

Anja Petković Komel
TU Wien

Vienna, Austria
anja.komel@tuwien.ac.at

Laura Kovács
TU Wien

Vienna, Austria
laura.kovacs@tuwien.ac.at

Sophie Rain
TU Wien

Vienna, Austria
sophie.rain@tuwien.ac.at

Michael Rawson
University of Southampton

Southampton, United Kingdom
michael@rawsons.uk

Abstract

Game-theoretic security analysis of decentralized systems examines
economic incentives behind user actions. It is particularly impor-
tant to certify that deviating from the intended, honest behavior
of the protocol is not beneficial: as long as users follow protocol,
they cannot be financially harmed, regardless of how others behave.
Such an economic analysis of blockchain protocols can be encoded
as an automated reasoning problem in the first-order theory of
real arithmetic, reducing game-theoretic reasoning to satisfiability
modulo theories (SMT). However, analyzing an entire game tree
as a single SMT instance does not scale to security properties with
millions of interactions. We address this challenge and propose a
divide-and-conquer security analysis based on compositional reason-
ing over game trees. Our compositional analysis is incremental: we
divide games into subgames such that changes to one subgame do
not necessitate re-analyzing the entire game, but only the ancestor
nodes. Our approach is sound, complete and effective: combining
the security properties of subgames yields security of the entire
game. Experimental results show that compositional reasoning dis-
covers intra-game properties and errors while scaling to game trees
with millions of nodes, enabling security analysis of large protocols.

CCS Concepts

• Theory of computation→ Automated reasoning; Algorith-
mic game theory; • Security and privacy→ Logic and verifi-

cation; Distributed systems security.

Keywords

Game Theory, Security, SMT Solving, Automated Reasoning

Reference Format:

Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Mi-
chael Rawson. 2025. Divide and Conquer: A Compositional Approach to
Game-Theoretic Security. In EasyChair preprint, 2025, 27 pages.

forsyte, Vienna, Austria
© 2025 Copyright held by the owner/author(s).

1 Introduction

Decentralized systems based on blockchain technology, such as
cryptocurrencies [Nakamoto 2009] and decentralized finance [Bu-
terin 2015], are in need of security guarantees. Establishing such
guarantees is usually approached by formal analysis of the under-
lying cryptographic protocols [Blanchet 2014; Kobeissi et al. 2020;
Meier et al. 2013; Wang et al. 2019]; or by game-theoretic security
analysis [Rain et al. 2023; Zappalà et al. 2021] to ensure economic
incentives in a protocol align with intended outcomes and capture
malicious actions preventable by punishment mechanisms within
blockchain analysis. This paper focuses on game-theoretic security.

Recent work shows that automatic analysis of game trees is
tractable via satisfiability modulo theory (SMT) solving in first-
order real arithmetic. In particular, game-theoretic analysis is re-
duced to solving a single large SMT instance [Brugger et al. 2023],
and this approach scales to mid-size games [Rain et al. 2024]. How-
ever, this style of automated analysis has inherent limitations. A
major problem is scalability: full game trees of large protocols are
huge, yielding enormous SMT instances that cannot be solved in
reasonable time. Another challenge is game-theoretic modeling: it
is much more convenient to reason about subgames in a modular,
independent manner and compose subgames’ results into results
over the entire protocol. Such convenience becomes even more
pronounced in the presence of repeated subgames.

This paper addresses the aforementioned challenges and intro-
duces a compositional approach to game-theoretic security (Section 5).
Given a protocol, wemodel parts of a protocol independently as sub-
games, analyze the security of the resulting subgames, and combine
subgame securities to enforce security of the game modeling the
entire protocol. In other words, we perform a divide-and-conquer
approach for game-theoretic security analysis, whose automation
is feasible via SMT solving (Section 6). As the same subgame might
occur multiple times in the game tree, the reasoning effort involved
is dramatically reduced by compositional game design, thus scaling
SMT-based reasoning to large game trees (Section 7).

Compositional reasoning is, however, not trivial, as illustrated by
Example 4.1: SMT queries may not be naïvely split into subgames,
as constraints in one subgame may interact with constraints in
other subgames (Section 4). Further, a security result of a subgame
cannot be just simply propagated upwards, as in our experiments
we have encountered all four possible scenarios: a subgame is not
secure, but the entire game is; a subgame is secure, but the entire

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

game is not; both subgame and entire game are secure; and both not
secure. Our divide-and-conquer approach provides a theoretically
sound and complete way to decompose reasoning into fine-grained
SMT queries over subgames (Theorem 6.4).

To the best of our knowledge, our approach is the first compo-
sitional method for game-theoretic security. We implement our
work as the next generation of the tool CheckMate [Rain et al.
2024] called CheckMate2.0. Our experiments demonstrate that
divide-and-conquer reasoning enables game-theoretic modeling
and analysis of complex real-world protocols with millions of nodes.

Contributions. We bring the following contributions1.

• We introduce a compositional framework for game-theoretic
security analysis (Section 5). Our framework defines player-
dependent notions of security properties, which in turn en-
ables divide-and-conquer reasoning over game trees. We
divide games into subgames while ensuring that the result-
ing reasoning is both sound and complete.
• We advocate divide-and-conquer algorithmic reasoning to
automate compositional modeling and security analysis (Sec-
tion 6). We interleave subgame and supergame (parent game)
reasoning, by using the security result of a subgame within
leaves of their respective supergames.
• Our compositional framework naturally supports the gen-
eration of counterexamples if security properties are vio-
lated. Moreover, we revise game preconditions in order to
strengthen and enforce security. When security is estab-
lished, we extract a game strategy as a proven security cer-
tificate (Sections 6.2 and 6.3).
• We implement compositional game reasoning in the Check-
Mate2.0 tool. Our experiments show that compositionality
significantly improves runtime and supports efficient case-
splitting over symbolic game utilities (Section 7).

2 Preliminaries

We assume familiarity with standard first-order logic [Smullyan
1995] and real arithmetic in the context of SMT solving [Barrett and
Tinelli 2018; Bjørner and Nachmanson 2024]. We next introduce
game-theoretic concepts relevant to our work, by adjusting [Brug-
ger et al. 2023] to our setting.

A game is a static finite object with finitely many players. Players
choose from a finite set of actions until the game ends, whereupon
they receive a utility. The focus is on perfect information Extensive
Form Games (EFGs) [Osborne and Rubinstein 1994] in which the
actions are chosen sequentially with full knowledge of all previous
actions. Games may yield collective benefit or loss, i.e. they are not
necessarily zero-sum.

Definition 2.1 (Extensive Form Game — EFG). An extensive form
game Γ = (𝑁,𝐺) is determined by a finite non-empty set of players
𝑁 together with a finite tree𝐺 = (𝑉 , 𝐸). A game pathℎ = (𝑒1, ..., 𝑒𝑛),
with 𝑒𝑖 ∈ 𝐸, that starts from the root of 𝐺 is called a history. We
denote the set of historiesℋ. There is a bijection between nodes
𝑣 ∈ 𝑉 and histories ℎ ∈ℋ that lead to these nodes.

1Formal proofs of all our claims can be found in Appendices A and C.

𝑀

(0, 𝑝)

𝑛

𝐸

(𝑝/2, 𝑝/2)

𝑖

(−𝑎,−𝑎)

𝑝𝑤

𝑒

Figure 1: Market Entry Game Γ𝑚𝑒 , with 𝑎, 𝑝 > 0.

• A history that leads to a leaf is called terminal and belongs
to the set of terminal histories 𝒯 ⊆ℋ. Terminal histories 𝑡
are associated with a utility for each player.
• Non-terminal histories are those histories that are not termi-
nal. Non-terminal histories ℎ have assigned a next player
denoted as 𝑃 (ℎ) ∈ 𝑁 . Player 𝑃 (ℎ) chooses from the set 𝐴(ℎ)
of possible actions following ℎ.

In an EFG Γ we call a terminal history ℎ∗ honest if it represents
the expected behavior in Γ. An EFG Γ can have many honest his-
tories; security analysis over Γ is always performed relative to a
chosen and fixed honest history (Section 3.1).

Example 2.2 (Market Entry Game). Consider the Market Entry
game of Figure 1. In this game there are two players:𝑀 representing
a new company and 𝐸 an established company. At the root, it is
the turn of player 𝑃 (∅) = 𝑀 to choose from actions 𝐴(∅) = {𝑛, 𝑒}.
Action 𝑛 represents not entering the market, producing a terminal
history (𝑛) where 𝑀 gets 0 utility and 𝐸 gets all of the profits
𝑝 > 0. Action 𝑒 represents entering the market, in which case 𝐸
can respond by either ignoring this move and thus splitting profits
equally, or by entering a price war that damages both players.

Utilities in game theory are usually numeric constants. We gen-
eralize utilities to symbolic terms in real arithmetic and thus encode
all possible values within given constraints. Variables and numeric
constants are evaluated over the real numbers extended by a finite
set of infinitesimals, closer to zero than any real number. Infinitesi-
mals model subjective (in)conveniences that do not relate directly
to funds, such as opportunity cost. We model infinitesimals with
terms over R × R, ordered lexicographically: the first component
represents the real part, the second the infinitesimal. We write
real for the first projection and avoid writing pairs, using 𝑎, 𝑏, 𝑐 . . .
for real variables, and 𝛼, 𝛽,𝛾, . . . for infinitesimals. The utility term
𝑎+𝛼 −𝜀 is therefore represented as (𝑎, 0) + (0, 𝛼) − (0, 𝜀) = (𝑎, 𝛼 −𝜀).

Example 2.3. We could modify the Market Entry game from Ex-
ample 2.2 by adding an infinitesimal 𝛼 > 0 to the utility of player
𝑀 at (𝑒, 𝑖). The utility 𝑝

2 + 𝛼 represents half of the profit 𝑝 and the
additional benefit of entering the market 𝛼 , as 𝑀 is motivated to
establish a new entity on the market.

To formulate game-theoretic security properties, we need the
following definitions for EFGs.

Definition 2.4 (EFG Properties). Let Γ = (𝑁,𝐺) be an EFG.
Strategy A strategy 𝜎 for a group of players 𝑆 ⊆ 𝑁 is a function

mapping non-terminal histories ℎ ∈ ℋ \𝒯, where one of

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

the players in group 𝑆 has a turn 𝑃 (ℎ) ∈ 𝑆 , to the possible
actions 𝐴(ℎ). We write 𝒮𝑆 for the set of strategies for group
𝑆 , and 𝒮 for 𝒮𝑁 which we call joint strategies. We refer to
the union of strategies with disjoint domains as a combined
strategy and denote it by (𝜎1, 𝜎2, . . . , 𝜎𝑛).

Resulting History The resulting terminal history 𝐻 (𝜎) of a
strategy𝜎 is the unique history obtained by following chosen
actions in 𝜎 from root to leaf.

Following Honest History A strategy for a player 𝑝 follows
the honest history ℎ∗ if, at every node where 𝑝 is making a
choice, the strategy chooses the action in ℎ∗.

Utility Function The utility function 𝑢𝑝 (𝜎) assigns to player
𝑝 ∈ 𝑁 their utility at the resulting terminal history of the
joint strategy 𝜎 ∈ 𝒮. We sometimes write all player utilities
for a joint strategy as 𝑢 (𝜎), denoting a tuple of size |𝑁 |. We
also write 𝑢𝑝 (𝐻 (𝜎)) := 𝑢𝑝 (𝜎).

Subgame Subgames Γ|ℎ of Γ are formed from the same set 𝑁
of players and a subtree of𝐺 , and are therefore identified by
the history ℎ leading to the subtree𝐺 |ℎ . Historiesℋ|ℎ of Γ|ℎ
are histories inℋ with prefix ℎ, and similarly for the utility
function 𝑢 |ℎ and strategies 𝜎 |ℎ ∈ 𝒮|ℎ . This includes trivial
subgames: leaves or the entire tree Γ at the empty history.

Supergame If ℎ′ is a prefix of ℎ, Γ|ℎ′ is a supergame of Γ|ℎ .
Subtree along/off Honest History Let ℎ∗ be the honest his-

tory. A subgame Γ|ℎ is along the honest history iff ℎ is a
prefix of ℎ∗; that is, there is a history in the subtree 𝑔 ∈ℋ|ℎ
such that (ℎ,𝑔) = ℎ∗. Otherwise, Γ|ℎ is off the honest history.

Intuitively, a subgame is that part of the game that is still to be
played after some actions have been taken already. A supergame of
a subgame is any game tree that embeds the subgame as the subtree.
We use subgame/subtree and supergame/supertree interchangeably.

Example 2.5. Consider again the Market Entry game in Figure 1.
A joint strategy 𝜏 could have𝑀 taking action 𝑛 initially, and player
𝐸 taking 𝑖 after (𝑒).𝑀’s strategy 𝜏𝑀 ∈ 𝒮𝑀 takes action 𝑛 initially.
𝐸 receives 𝑢𝐸 (𝜏) = 𝑝 . The history resulting from 𝜏 is (𝑛), and 𝜏 is a
strategy extending history (𝑛).

The subgame for history (𝑒) has players {𝑀, 𝐸} and a tree where
𝐸 must choose between action 𝑖 with utility (𝑝2 ,

𝑝
2) and action 𝑝𝑤

with utility (−𝑎,−𝑎). For honest history (𝑒, 𝑖) the subtree Γ𝑚𝑒 | (𝑒)
after action 𝑒 is along the honest history (𝑒, 𝑖), whereas the trivial
subtree Γ𝑚𝑒 | (𝑜) after action 𝑜 is off the honest history (𝑒, 𝑖).

The Market Entry game has 2 × 2 = 4 joint strategies as 𝑀
chooses from two possible actions, and independently 𝐸 picks one
action out of two in the subtree Γ𝑚𝑒 | (𝑒) .

3 Game-Theoretic Security Properties

Our work models real-life protocols as extensive form games (EFGs).
Subsequently, we reduce the security analysis of a protocol to the
game-theoretic security analysis of its corresponding EFG. Accord-
ing to Zappalà et al. [2021] an adversary could execute an attack in
a protocol for personal gain or harming somebody. Therefore, we
consider a protocol to be game-theoretically secure if the following
properties hold:
(P1) Byzantine Fault-Tolerance. Even in the presence of adver-

saries, honest players do not suffer loss. That is, in a secure

protocol an honest player will not receive negative utility,
independent of others’ behavior. Therefore, there are no
“attacks” where somebody is harmed.

(P2) Incentive Compatibility. Rational agents do not deviate
from the honest behavior, as it yields the best payoff. Hence,
in a secure protocol, a rational “attacker” is behaving hon-
estly and no adversary gets personal gain by deviation.

3.1 Security Properties for Subgames

To accommodate a compositional game-theoretic approach (Sec-
tion 5), we define the security properties weak immunity, collusion
resilience, and practicality for any subtree of Γ, generalizing Brugger
et al. [2023]. Property (P1) is ensured by weak immunity and (P2) by
the combination of collusion resilience and practicality. We assume
a total order on symbolic utility terms, lifted in Section 3.2.

Definition 3.1 (Weak Immunity). A subtree Γ|ℎ of game Γ with
honest history ℎ∗ is weak immune, if a strategy 𝜎 ∈ 𝒮|ℎ exists such
that all players 𝑝 following 𝜎 always receive non-negative utility:

∃𝜎 ∈ 𝒮|ℎ .∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 . (wi(Γ|ℎ))

If ℎ is along ℎ∗, additionally 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Example 3.2. The Market Entry game from Example 2.2 with
honest history (𝑛) is weak immune: if 𝑀 behaves honestly both
players get a nonnegative utility; if𝑀 deviates via 𝑒 , player 𝐸 can
choose action 𝑖 and obtains a positive utility 𝑝

2 .

Sometimes, weak immunity is too restrictive and we take weaker
immunity to ensure (P1).

Definition 3.3 (Weaker Immunity). A subtree Γ|ℎ of game Γ with
honest history ℎ∗ is weaker immune, if there exists a strategy 𝜎 ∈
𝒮|ℎ , such that all players 𝑝 that follow 𝜎 always receive at least a
negative infinitesimal:

∃𝜎 ∈ 𝒮|ℎ .∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . real(𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝)) ≥ 0 . (weri(Γ|ℎ))

If ℎ is along ℎ∗, additionally 𝐻 |ℎ (𝜎) = ℎ∗|ℎ .

Next, the property of collusion resilience requires the honest
behavior to yield the best payoff, even in the presence of collusion.

Definition 3.4 (Collusion Resilience). A subtree Γ|ℎ of the game Γ
with honest history ℎ∗ is collusion resilient if there exists a strategy
𝜎 ∈ 𝒮|ℎ such that no strict subgroup of players can deviate to
receive a joint utility greater than their joint honest utility:

∃𝜎 ∈ 𝒮|ℎ .∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ 𝒮|ℎ .
∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) .

(cr(Γ|ℎ))
If ℎ is along ℎ∗, also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Note that the collusion resilience of a subtree according to the
above definition depends on the honest utility, the utility resulting
from the honest history in the entire game Γ. The node containing
the honest utility is not necessarily part of the considered subtree.

Example 3.5. Consider again the Market Entry game from Ex-
ample 2.2 with the honest history (𝑛). This is collusion resilient:
we can take actions 𝑛 for player𝑀 and 𝑝𝑤 for player 𝐸. Since it is
a two-player game, the colluding group of players can only be a

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

singleton. If𝑀 deviates from the honest behavior, they get utility
−𝑎, which is less than 0 in the honest case. If 𝐸 deviates, they get
𝑝
2 , which is still less than 𝑝 in the honest utility. Thus, the game is
collusion resilient.

The next property of practicality ensures that, for all player
decisions, the honest behavior is also “greedy”: if all players act
selfishly, that is they maximize their own utilities, the honest choice
yields the best utility.

Definition 3.6 (Practical Subtrees). A subtree Γ|ℎ of the game Γ
with honest history ℎ∗ is practical, if there exists a strategy 𝜎 ∈ 𝒮|ℎ
such that no player can deviate in any subtree to receive a strictly
greater utility in the subtree:

∃𝜎 ∈ 𝒮|ℎ ∀𝑔 ∈ℋ|ℎ ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮| (ℎ,𝑔) . (pr(Γ|ℎ))
𝑢 |𝑔,𝑝 (𝜎 |𝑔) ≥ 𝑢 |𝑔,𝑝 (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) .

If ℎ is along ℎ∗, also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ has to hold.

Example 3.7. The Market Entry game from Example 2.2 with the
honest history (𝑛) is not practical. Player 𝐸 should choose 𝑖 , as it
yields a better utility. It is then not practical for𝑀 to choose 𝑛, as
it yields utility 0, whereas action 𝑒 yields the better utility 𝑝

2 .
We finally note that every subtree Γ|ℎ of a game Γ that is off the

honest history is always practical.2

Example 3.8. Consider the Market Entry subgame after the non-
terminal history (𝑒), marked by teal dashed lines in Figure 1. We
can always choose the action that yields the best utility for the
current player 𝐸. The only way we can violate practicality is by
having the best choice conflicting with the honest choice, which
cannot happen when the subtree is off honest history.

3.2 Total Orders

Similarly to Brugger et al. [2023], in order to lift the assumption
that we know how all utility terms relate, we make the security
analysis relative to a finite set𝐶 of initial constraints on the symbolic
variables appearing in the utility terms and explicitly universally
quantify over the variables, as follows

∀®𝑥 .
∧
𝑐∈𝐶

𝑐 [®𝑥] → ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ 𝑠𝑝 (𝜎) [®𝑥] , (1)

where ®𝑥 = (𝑥1, . . . , 𝑥ℓ) are the real variables occurring in the utility
terms𝑇𝑢 and 𝑠𝑝 (𝜎) is a formula pertaining to the security property
𝑠𝑝 ∈ {𝑤𝑖,𝑤𝑒𝑟𝑖, 𝑐𝑟, 𝑝𝑟 } after existential quantification of the strategy.
For weak immunity 𝑤𝑖 (𝜎) = ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ . 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0,
and similarly for the other properties.

Furthermore, to efficiently handle the comparison of symbolic
utilities in an SMT solver, we implement an equivalent version of
the above formula by considering all consistent total orders ⪯ over
the set 𝑇𝑢 of utility terms appearing in the game tree Γ.

Theorem 3.9 (CompositionalGame-Theoretic Securitywith
Total Orders). For an EFG Γ with honest history ℎ∗ and a finite set
of initial constraints 𝐶 , property (1) is equivalent to

∀(⪯,𝑇𝑢) ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗∧

∀®𝑥 .
∧

𝑐∈𝐶∪⪯
𝑐 [®𝑥] → 𝑠𝑝 (𝜎) [®𝑥] . (2)

2This is also formally proven in Appendix C.

3.3 Counterexamples

If there is no joint strategy satisfying a security property (wi, weri,
cr, or pr), we can investigate why not. Counterexamples serve the
important purpose of providing attack vectors and thus pinpointing
weaknesses of a protocol underlying the game model.

Counterexamples to Weak(er) Immunity. For the weak(er)
immunity property, a counterexample is a harmed honest player
𝑝 and a partial strategy of the other players 𝑁 − 𝑝 such that no
matter what honest actions 𝑝 chooses, the other players cannot
avoid receiving a real-valued negative utility.

Definition 3.10 (Counterexamples to Weak(er) Immunity). Let Γ
be an EFG and ℎ∗ the considered honest history. A counterexample
to ℎ∗ being weak(er) immune is a player 𝑝 together with a partial
strategy 𝑠𝑁−𝑝 such that 𝑠𝑁−𝑝 extended by any strategy 𝜎𝑝 of player
𝑝 who follows the honest history ℎ∗, yields a terminal history
𝐻 (𝑠𝑁−𝑝 , 𝜎𝑝) = 𝑡𝜎𝑝 with 𝑢𝑝 (𝑡𝜎𝑝) < 0 (resp. for weaker immunity
real(𝑢𝑝 (𝑡𝜎𝑝)) < 0) and it is minimal with that property.

Minimality of the partial strategy 𝑠𝑁−𝑝 states that, if any infor-
mation point 𝑠𝑁−𝑝 (ℎ) = 𝑎 is removed, there exists a strategy 𝜎𝑝
of player 𝑝 such that (𝜎𝑝 , 𝑠′𝑁−𝑝) does not yield a terminal history,
where 𝑠′

𝑁−𝑝 is 𝑠𝑁−𝑝 without action 𝑎. That is, when following only
actions of (𝜎𝑝 , 𝑠′𝑁−𝑝), we get stuck at an internal node of the tree.

Example 3.11. A counterexample to the weak immunity of the
Market Entry game of Example 2.2 with the honest history (𝑒, 𝑖)
would be player𝑀 and a partial strategy for 𝐸, where they choose
action 𝑝𝑤 . If𝑀 behaves honestly and chooses action 𝑒 , they end up
with the negative utility of −𝑎 after the terminal history (𝑒, 𝑝𝑤).

Counterexample to Collusion Resilience. A counterexam-
ple to collusion resilience (Definition 3.12) consists of a group of
deviating players 𝑆 and their partial strategy 𝑠𝑆 ∈ 𝒮, such that the
joint utility of 𝑆 is better than the honest utility, no matter how the
other players 𝑁 − 𝑆 react, while still following the honest history.

Definition 3.12 (Counterexamples to Collusion Resilience). Let Γ
be an EFG and ℎ∗ the considered honest history. A counterexample
to ℎ∗ being collusion resilient is a set of deviating players 𝑆 together
with their strategy 𝑠𝑆 such that 𝑠𝑆 extended by any strategy 𝜎𝑁−𝑆
of players 𝑁 − 𝑆 , which follows the honest history ℎ∗, yields a
terminal history 𝐻 (𝜎𝑁−𝑆 , 𝑠𝑆) = 𝑡𝜎𝑁 −𝑆 with∑︁

𝑝∈𝑆
𝑢𝑝 (𝑡𝜎𝑁 −𝑆) >

∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗)

and it is minimal with that property. The minimality of 𝑠𝑆 is similar
to the minimality of the partial strategy for weak(er) immunity.

Example 3.13. In the Market Entry game of Example 2.2, a coun-
terexample to the honest history (𝑒, 𝑝𝑤) being collusion resilient
is a deviating group {𝐸} with a partial strategy that takes action
𝑖 . Since the honest player𝑀 can only take action 𝑒 , the deviating
utility for 𝐸 is 𝑝

2 , which is greater than the honest one −𝑎.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

𝑀

(0, 𝑝)

𝑛

𝐸

(𝑝/2, 𝑝/2)

𝑖

(−𝑎,−𝑎)

𝑝𝑤

𝑒

𝑀

(0, 𝑝)

𝑛

¬wi

𝑒

Figure 2: Naive Compositionality ofWeak Immunity forMar-

ket Entry Game, 𝑎, 𝑝 > 0.

Counterexamples to Practicality. Intuitively, a counterexam-
ple to practicality of the honest history ℎ∗ has to provide a reason
why a rational player would not follow ℎ∗. At some point along ℎ∗
after a prefix ℎ, there is an action 𝑎 promising the current player
𝑃 (ℎ) a strictly better utility than ℎ∗. Further, in the subgame Γ| (ℎ,𝑎)
after (ℎ, 𝑎) all practical utilities have to be better for 𝑃 (ℎ), oth-
erwise other players could choose actions in Γ| (ℎ,𝑎) that would
disincentivize 𝑃 (ℎ) to deviate from ℎ∗.

Definition 3.14 (Counterexamples to Practicality). For an EFG Γ
and honest history ℎ∗, a counterexample to practicality of ℎ∗ is a
prefix ℎ of ℎ∗ together with an action 𝑎 ∈ 𝐴(ℎ), such that for all
practical terminal histories 𝑡 in the subgame Γ| (ℎ,𝑎) it holds that
𝑢𝑃 (ℎ) (ℎ∗) < 𝑢𝑃 (ℎ) ((ℎ, 𝑎, 𝑡)).

Example 3.15. Recall that the Market Entry game from Exam-
ple 2.2 with the honest history (𝑛) is not practical. A counterexam-
ple to practicality is the empty prefix ℎ = ∅ and the action 𝑒 , as the
practical utility in the subgame after history (𝑒) yields 𝑝

2 for player
𝑀 , which is strictly better than the 0 in the honest case.

4 Unsound Naïve Approach to Compositionality

For a divide-and-conquer style of compositional game-theoretic se-
curity analysis, we would like to analyze a game tree by propagating
security results of subtrees upwards to the parent/ancestor nodes
of the supertree. However, naïvely propagating the yes/no security
result of the subtree does not suffice, as shown in Example 4.1.

Example 4.1. Consider the Market Entry game (Example 2.2)
reproduced on the left-hand side of Figure 2, with honest history
(𝑛). Example 3.7 shows this game is weak immune. Now consider
a naïve compositional approach looking at the subgame after non-
terminal history (𝑒), marked by teal dashed lines. Since player 𝐸 can
take action 𝑝𝑤 — leading to negative utility for 𝑀 — this subtree
is not weak immune. To mimic a naïve compositionality approach,
we replace the subtree after (𝑒) by ¬wi, shown on the right. Asked
whether this supertree is weak immune, one would say no, as 𝑀
could deviate from the honest history via 𝑒 , which leads to a subtree
that is not weak immune. This is an incorrect conclusion since the
Market Entry game is weak immune for the honest history (𝑛).

The main reason why the naïve approach above fails is that we
need more information to be able to propagate a result from a sub-
tree to its parent, namely that the subtree is not weak immune only
for player 𝑁 . In the parent, player 𝑁 can achieve weak immunity

by behaving honestly and choosing action 𝑛, ensuring weak im-
munity of the entire game tree. Similar additional information (see
Theorem 5.6) is needed for the other security properties: collusion
resilience requires which colluding groups the subtree is secure
against; practicality requires the practical utilities resulting from
the subtree, and whether the utility of the honest history is practical.
We now show that propagating this information yields a sound and
complete compositional approach to game-theoretic security.

5 Compositional Game-Theoretic Security

Our compositional framework for game-theoretic security analyses
is materialized via two crucial components:

(1) Stratified analysis of security properties over players, cap-
turing player-wise security properties (Section 5.1)

(2) Splitting player-wise security properties into subgames, en-
abling us to propagate subgame reasoning for deriving su-
pergame security (Section 5.2).

For simplicity, we assume a total order ⪯ on the occurring utility
terms 𝑇𝑢 in order to relate symbolic game utilities. As before, this
assumption is relaxed in Section 6, generalizing our approach.

5.1 Security Properties Stratified over Players

We start with the following observation. While Example 4.1 shows
that there are no implications of subtree and supertree results in
general, subtrees along the honest history can in fact soundly pass
negative (not secure) results up to their parents.

Theorem 5.1 (Eqivalence of Non-Secure Games). A game
Γ with honest history ℎ∗ violates one of the security properties of
weak(er) immunity, collusion resilience, or practicality iff there exists
a history ℎ along the honest history ℎ∗ such that Γ|ℎ violates the
respective security property.

Intuitively, the honest history ℎ∗ “enforces” a path down the tree
Γ: when a non-secure subtree Γ|ℎ is encountered along this path,
there is no way to compensate for it. Theorem 5.1, however, only
propagates non-secure properties along the honest history. To allow
for analysis results propagating from subgames to supergames,
we stratify game-theoretic security analysis over individual players.
This means we can analyze the security properties for a player
(weak immunity: Definition 5.2, practicality: Definition 5.5), or
player group (collusion resilience: Definition 5.4) at a time, without
interfering with results of other players or groups (Theorem 5.6).

Definition 5.2 (Weak Immunity for a Player). A subgame Γ|ℎ with
honest history ℎ∗ is weak immune for player 𝑝 ∈ 𝑁 , if there exists
a strategy 𝜎 ∈ 𝒮|ℎ such that no matter to which strategy 𝜏 ∈ 𝒮|ℎ
other players deviate, 𝑝’s utility will be non-negative and, if ℎ is
along ℎ∗, then also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ (wi𝑝 (Γ|ℎ))
∀𝜏 ∈ 𝒮|ℎ . 𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 .

An analogous definition applies to weaker immunity.

Example 5.3 (Player-Wise Weak Immunity). Let us revisit the
Market Entry game Γ𝑚𝑒 with honest history (𝑛) from Example 2.2,
considering one player at a time.

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

The first player is 𝑀 . The subgame Γ𝑚𝑒 | (𝑒) after history (𝑒) is
not weak immune for𝑀 , since 𝐸 could take action 𝑝𝑤 . Propagating
this result to the supertree Γ𝑚𝑒 , we report weak immunity for𝑀 :
as𝑀 will honestly take action 𝑛, we avoid Γ𝑚𝑒 | (𝑒) .

For 𝐸, Γ𝑚𝑒 | (𝑒) is weak immune as action 𝑖 can always be chosen,
yielding positive utility. Propagating this result, we conclude that
Γ𝑚𝑒 is weak immune for 𝐸: all choices of𝑀 (whomwe do not assume
to be honest in the analysis of 𝐸), lead to either non-negative utility
for 𝐸 or to a subtree which is weak immune for 𝐸.

The definition for collusion resilience against a given player
group is similar to Definition 5.2, by lifting the quantifier over the
player subgroups 𝑆 ⊂ 𝑁 to the front of the formula.

Definition 5.4 (Collusion Resilience against a Player Group). A
subgame Γ|ℎ of game Γ with honest history ℎ∗ is collusion resilient
against a group of players 𝑆 ⊂ 𝑁 , if there exists a strategy 𝜎 ∈ 𝒮|ℎ
such that no matter to which strategy 𝜏 ∈ 𝒮|ℎ the players in 𝑆

deviate, their joint utility will be not greater than their honest joint
utility and, if ℎ is along ℎ∗, then also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ (cr𝑆 (Γ|ℎ))

∀𝜏 ∈ 𝒮|ℎ .
∑︁
𝑝∈𝑆

𝑢 |ℎ,𝑝 (𝜎) ≥ 𝑢 |ℎ,𝑝 (𝜏𝑆 , 𝜎𝑁−𝑆) .

Defining practicality for a single player, though, requires slight
changes: instead of considering an arbitrary player 𝑝 , we define
practicality for that player whose turn it is in the considered subtree.

Definition 5.5 (Practicality for the Current Player). A subgame
Γ|ℎ of a game Γ with honest history ℎ∗ is practical for the current
player, if there exists a strategy 𝜎 ∈ 𝒮|ℎ such that in each subtree
Γ| (ℎ,𝑔) no matter to which strategy 𝜏 ∈ 𝒮| (ℎ,𝑔) the current player
𝑃 (ℎ,𝑔) deviates, the utility of 𝑃 (ℎ,𝑔) in the subtree will not increase
strictly and, if ℎ is along ℎ∗, then also 𝐻 |ℎ (𝜎) = ℎ∗|ℎ :

∃𝜎 ∈ 𝒮|ℎ . (pr𝑃 (Γ|ℎ))
(ℎ along ℎ∗ → 𝐻 |ℎ (𝜎) = ℎ∗|ℎ) ∧ ∀𝑔 ∈ℋ|ℎ ∀𝜏 ∈ 𝒮| (ℎ,𝑔) .
𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔) ≥ 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜏𝑃 (ℎ,𝑔) , 𝜎 |𝑔,𝑁−𝑃 (ℎ,𝑔)) .

We now state our first crucial result towards compositionality:
stratification of security analysis over players.

Theorem 5.6 (Player-Wise Security Properties). A game Γ
satisfies a security property iff it satisfies the respective security prop-
erty player-wise. That is, the following equivalences hold:

(1) Γ weak immune⇔∀𝑝 ∈ 𝑁 . Γ weak immune for 𝑝 .
(2) Γ weaker immune⇔∀𝑝 ∈ 𝑁 . Γ weaker immune for 𝑝 .
(3) Γ collusion resilient⇔∀𝑆 ⊂ 𝑁 . Γ collusion resilient against 𝑆 .
(4) Γ practical⇔ Γ practical for the current player.

5.2 Splitting and Combining Player-Wise

Security Properties

Theorem 5.6 proves that the security analysis of a game can be
carried out player-wise, instead of analyzing interactions between
all (groups of) players. We now show that not only can players can
be treated individually, but (super)game security can also be split
into subgame security. That is, the security of a supergame can be
proven by proving player-wise security over subgames. This implies
compositional game-theoretic security is sound and complete.

Theorem 5.7 (CompositionalGame-Theoretic Security). The
game-theoretic security of an EFG Γ with honest history ℎ∗ can be
computed compositionally. That is, the only information needed of a
subtree Γ|ℎ , to decide whether Γ satisfies security property is

• for weak(er) immunity: for which players 𝑝 ∈ 𝑁 the subtree
Γ|ℎ is weak(er) immune;
• for collusion resilience: against which player groups 𝑆 ⊂ 𝑁 the
subtree Γ|ℎ is collusion resilient;
• for practicality:
– if ℎ is along ℎ∗: whether ℎ∗|ℎ is practical in Γ|ℎ ;
– if ℎ is not along ℎ∗: the set U(ℎ) containing all practical
utilities of Γ|ℎ . Here, a utility 𝑢 (𝑡) after terminal history
𝑡 ∈ 𝒯 is practical iff 𝑡 is practical.

Theorems 5.8, 5.10 and 5.12 establish how to compositionally
compute player-wise security for each security property, yielding a
constructive proof of Theorem 5.7.

Theorem 5.8 (Compositional Weak Immunity). Let Γ be an
EFG with honest history ℎ∗ and 𝑝 ∈ 𝑁 a player. The following hold.

1) A leaf of Γ is weak immune for 𝑝 iff 𝑝’s utility is non-negative:

∀𝑡 ∈ 𝒯. 𝑤𝑖𝑝 (Γ|𝑡) ⇔ 𝑢𝑝 (𝑡) ≥ 0 .

2) A branch of Γ is weak immune for 𝑝 , where 𝑝 is not the current
player, iff all children are weak immune for 𝑝 :

∀ℎ ∈ℋ\𝒯. 𝑝 ≠ 𝑃 (ℎ) ⇒
(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ) .𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

3) A branch of Γ along the honest history ℎ∗ is weak immune for
the current player 𝑝 , iff the child following ℎ∗ is weak immune for 𝑝 .
Let 𝑎∗ ∈ 𝐴(ℎ) be the honest choice, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ along ℎ∗ ⇒(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ 𝑤𝑖𝑝 (Γ| (ℎ,𝑎∗))

)
.

4) A branch of Γ off the honest history ℎ∗ is weak immune for the
current player 𝑝 , iff there exists a child that is weak immune for 𝑝 :

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ off ℎ∗ ⇒(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ) . 𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

Similar results to Theorem 5.8 hold for weaker immunity.

Example 5.9 (Compositional Weak Immunity). We revisit the Mar-
ket Entry game Γ𝑚𝑒 of Figure 1, with honest history (𝑛). We com-
pute that Γ𝑚𝑒 is weak immune using our compositional approach,
where we stratify over players first and then split Γ𝑚𝑒 into subtrees.

We start with player 𝑀 . Theorem 5.8 implies that Γ𝑚𝑒 is weak
immune for𝑀 iff Γ𝑚𝑒 | (𝑛) is weak immune for𝑀 ; since Γ𝑚𝑒 | (𝑛) is a
leaf, we must check that the utility of𝑀 is non-negative, i.e. 0 ≥ 0.
As this is true, game Γ𝑚𝑒 is weak immune for𝑀 .

Next, 𝐸. According to Theorem 5.8, the game Γ𝑚𝑒 is weak im-
mune iff Γ𝑚𝑒 | (𝑛) and Γ𝑚𝑒 | (𝑒) are weak immune for 𝐸. The subgame
Γ𝑚𝑒 | (𝑛) is weak immune for 𝐸 if their utility is non-negative, i.e.
𝑝 ≥ 0, true by assumption. The subtree Γ𝑚𝑒 | (𝑒) is now weak im-
mune for 𝐸 iff either Γ𝑚𝑒 | (𝑒,𝑖) or Γ𝑚𝑒 | (𝑒,𝑝𝑤) is. 𝐸’s utility at Γ𝑚𝑒 | (𝑒,𝑖)
is 𝑝/2 ≥ 0. Therefore Γ𝑚𝑒 is weak immune for 𝐸, and from Theo-
rem 5.6 it follows that Γ𝑚𝑒 is weak immune.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

Theorem 5.10 (Compositional Collusion Resilience). Let Γ
be an EFG with honest history ℎ∗ and honest utility 𝑢∗ = 𝑢 (ℎ∗). The
following equivalences hold.

1) A leaf of Γ is collusion resilient against 𝑆 ⊂ 𝑁 iff the honest
joint utility of the deviating players 𝑝 ∈ 𝑆 is greater than or equal to
their joint utility at that leaf:

∀𝑡 ∈ 𝒯. 𝑐𝑟𝑆 (Γ|𝑡) ⇔
∑︁
𝑝∈𝑆

𝑢∗𝑝 ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) .

2) A branch of Γ, where the current player is in the deviating group
𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff all children are collusion
resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∈ 𝑆 ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ) . 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

3) A branch of Γ along the honest history ℎ∗, where the current
player is not in the deviating group 𝑆 ⊂ 𝑁 , is collusion resilient
against 𝑆 iff the child following ℎ∗ is collusion resilient against 𝑆 . Let
𝑎∗ ∈ 𝐴(ℎ) be the honest action, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ along ℎ∗ ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ 𝑐𝑟𝑆 (Γ| (ℎ,𝑎∗))

)
.

4) A branch of Γ off the honest history ℎ∗, where the current player
is not in the deviating group 𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff
there exists a child that is collusion resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ off ℎ∗ ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ) . 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

Note that, if a player is in a deviating group, all child subtrees
need to be collusion resilient even if we are along honest history, as
the deviator might choose any action and potentially harm honest
players. In contrast, for an honest player and a node off honest
history, there needs to merely exist one collusion resilient child
that the player can choose to defend against the deviating group.

Example 5.11 (Compositional Collusion Resilience). We compo-
sitionally compute the collusion resilience of the Market Entry
game Γ𝑚𝑒 (Figure 1) with honest history (𝑛). We have two possible
colluding groups, both singletons {𝑀} and {𝐸}.

Consider {𝑀}. At the root of Γ𝑚𝑒 , since the player 𝑀 is in the
colluding group, all subtrees must be collusion resilient against
{𝑀}. Along the honest history we reach a leaf Γ𝑚𝑒 | (𝑛) , which is
collusion resilient (it is the honest leaf). For subtree Γ𝑚𝑒 | (𝑒) there
needs to exist a collusion resilient child, which is the case in the leaf
after (𝑒, 𝑝𝑤): utility −𝑎 is strictly smaller than the honest utility 0.

Next, {𝐸}. At the root, 𝑀 is not in the deviating group. Hence,
only the honest child Γ𝑚𝑒 | (𝑛) need be collusion resilient against
{𝐸}, which it is, as it is the honest leaf; so the utility is equal to the
honest one in part (1) of Theorem 5.10. This suffices to establish
collusion resilience against {𝐸}; checking Γ𝑚𝑒 | (𝑒) is unnecessary.

Using Theorem 5.6, it follows that Γ𝑚𝑒 is collusion resilient.

Theorem 5.12 (Compositional Practicality). Let Γ be an EFG
with honest history ℎ∗ and U(ℎ) be the set of practical utilities of
subtree Γ|ℎ . Let𝑢∗ be the honest utility𝑢∗ = 𝑢 (ℎ∗). Then the following
identities and equivalences hold.

1) In a leaf of Γ the only practical utility is that of the leaf.

∀𝑡 ∈ 𝒯. U(𝑡) = {𝑢 (𝑡)} .

2) The honest utility 𝑢∗ is practical in a branch of Γ along ℎ∗ iff
it is practical in the child following ℎ∗ and if for every other child at
least one practical utility is not greater than 𝑢∗ for the current player.
Let 𝑎∗ ∈ 𝐴(ℎ) be the honest action after ℎ, then:

∀ℎ ∈ℋ \𝒯. ℎ along ℎ∗ ⇒
(
𝑝𝑟 (Γ|ℎ) ⇔

𝑝𝑟 (Γ| (ℎ,𝑎∗)) ∧ ∀𝑎 ∈ 𝐴(ℎ) \ {𝑎∗} ∃𝑢 ∈ U((ℎ, 𝑎)) . 𝑢∗𝑃 (ℎ) ≥ 𝑢𝑃 (ℎ)
)
.

3) A utility is practical in a branch of Γ off the honest history ℎ∗

iff it is practical in a child and if, for every other child, at least one
practical utility is not greater for the current player.

∀ℎ ∈ℋ \𝒯. ℎ off ℎ∗ ⇒
(
∀𝑡 ∈ 𝒯|ℎ . 𝑢 (𝑡) ∈ U(ℎ) ⇔

∃𝑎 ∈ 𝐴(ℎ) . 𝑢 (𝑡) ∈ U((ℎ, 𝑎)) ∧
∀𝑎′ ∈ 𝐴(ℎ) \ {𝑎} ∃𝑢′ ∈ U((ℎ, 𝑎′)) . 𝑢𝑃 (ℎ) (𝑡) ≥ 𝑢′

𝑃 (ℎ)
)
.

Example 5.13 (Compositional Practicality). To compositionally
compute the practicality of the Market Entry game Γ𝑚𝑒 of Figure 1
with honest history (𝑛), we start with the leaves of the tree, where
the practical utilities are the utilities of the leaves. Moving upwards
in the tree, we look at the subtree Γ𝑚𝑒 | (𝑒) , which is off the honest
history, so we take the better utility for player 𝐸, setting U(𝑒) =
{(𝑝2 ,

𝑝
2)}. At the root of the tree, which is along the honest history,

the practical utility of the honest subtree (0, 𝑝) should be practical.
Since all practical utilities of the non-honest child (there is just one)
are better for player𝑀 (as 𝑝

2 > 0), the honest utility is not practical.
Theorem 5.6 then implies that Γ𝑚𝑒 is not practical.

6 Automating Compositional Security Analysis

Section 5 assumed a total order ⪯ on game utility terms 𝑇𝑢 . This
section lifts fixed ordering constraints (⪯,𝑇𝑢) and interprets the
game variables in the utility terms 𝑇𝑢 as real-valued variables ®𝑥 , as
explained in Section 3.2. The results of Theorem 3.9 are also propa-
gated to our player-wise security properties from Theorem 5.6, as
the universal quantification over players, player groups, subgames,
and strategies are independent of the values ®𝑥 the variables in the
utility terms take. As such and as an example, weak immunity (1)
becomes equivalent to the player-wise weak immunity property:

∀(⪯,𝑇𝑢) ∀𝑝 ∈ 𝑁 ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝜏 ∈ 𝒮 .

∀®𝑥 .
∧

𝑐∈𝐶∪⪯
𝑐 [®𝑥] → 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) [®𝑥] ≥ 0 .

Mapping game-theoretic security from Theorem 3.9 to the player-
wise security of Theorem 5.6 is crucial for automating compositional
security: we only check relatively small properties of the form

∀®𝑥 .
∧

𝑐∈𝐶∪⪯
𝑐 [®𝑥] → 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥] , (3)

where 𝑢𝑡1 and 𝑢𝑡2 are term expressions over ®𝑥 ; checking such for-
mulas is very feasible using SMT solvers.

As usual, to check whether (3) is a theorem, the property is first
negated, and then an SMT solver is used to check satisfiability. This

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

is where the simplified quantified structure of (3) becomes espe-
cially friendly for automation: SMT solving over Theorem 5.6 hap-
pens in a purely existential fragment, for which efficient decision
procedures exist [Barrett and Tinelli 2018; Bjørner and Nachmanson
2024]. The remaining reasoning in (3), about the existence of strate-
gies 𝜎 witnessing player-wise security, is performed next using
the compositional security results of Theorems 5.8, 5.10 and 5.12,
without burdening the SMT solver. Such an interplay between SMT
solving and compositional security eases automation, as illustrated
below and detailed further in Section 6.1.

Example 6.1 (SMT Reasoning for Compositional Security). Revisit-
ing the Market Entry game Γ𝑚𝑒 of Figure 1, we study the SMT for-
mulae resulting from (3). Initial constraints 𝐶 = {𝑎 > 0, 𝑝 > 0}. All
symbolic utility terms occurring in the security properties of Γ𝑚𝑒 are
already totally ordered by the constraints in𝐶 . Hence, the only rele-
vant total order ⪯ here is that consistent with𝐶 , −𝑎 ≺ 0 ≺ 𝑝/2 ≺ 𝑝 .

To analyze, for example, the weak immunity of the Market Entry
game for player 𝐸 compositionally, we follow the algorithm induced
by Theorem 5.8. The SMT reasoning is only needed when we reach
a leaf, such as the one after history (𝑛). The resulting SMT query is

∀𝑎, 𝑝. 𝑎 > 0 ∧ 𝑝 > 0→ 𝑝 ≥ 0 ,

which is trivially valid. Hence, the subtree after history (𝑛) is weak
immune for 𝐸 for all allowed utility values.

6.1 Divide-and-Conquer Algorithms for

Compositional Security

Our compositionality results from Theorem 5.6 and Theorems 5.8,
5.10 and 5.12, extended by a lazy total-order approach, induce a
divide-and-conquer approach for splitting and combining reasoning
over game subtrees and supertrees. Our overall divide-and-conquer
framework for automating compositional game-theoretic reason-
ing is summarized in Algorithm 1, which in turn relies upon Algo-
rithm 2 as well as upon Algorithms 3 to 5 from the appendix. We
compositionally compute the game-theoretic security of a protocol,
analyzing the (protocol) game for all real-valued variables ®𝑥 of uti-
tilty terms 𝑇𝑢 , considering all total orders ⪯ at once. If we fail, we
split the total orders into multiple cases, unless we can conclude
that the respective security property cannot be satisfied even if
we restrict the values of ®𝑥 to one total order ⪯. The case split we
consider is induced by an SMT query as in property (3) when some
but not all ®𝑥 satisfy the implication. We then split into total orders
that enforce 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥], respectively 𝑢𝑡1 [®𝑥] < 𝑢𝑡2 [®𝑥], in (3).

Algorithm 1: Function SatisfiesProperty. In Algorithm 1
an instance Π, which contains the game tree Γ, the set of infini-
tesimal variables 𝑖𝑛𝑓 (as introduced in Section 2), and the set of
initial constraints 𝐶 , is given as input. The input to Algorithm 1
also contains the honest history ℎ∗, the security property to be
analyzed, and the currently considered case case.

The function SatisfiesProperty in Algorithm 1 is called ini-
tially with the empty case to analyze all total orders. This case can
be refined throughout Algorithm 1, using case splits. Hence, in
the first call of the function, the set S, representing the constraints
handed to an SMT solver, contains only the initial constraints 𝐶 .
The relevant player groups RelevantGroups of security property

Algorithm 1: Function SatisfiesProperty for Com-
positional Game-Theoretic Security Reasoning.

input : input instance Π = (Γ, 𝑖𝑛𝑓 ,𝐶), honest history ℎ∗,
the name of a security property
𝑠𝑝 ∈ {𝑤𝑖,𝑤𝑒𝑟𝑖, 𝑐𝑟, 𝑝𝑟 }, and the currently
analyzed case (as set of SMT constraints) case.

output :true if Π satisfies 𝑠𝑝 in case case, false
otherwise

1 S← ∅
2 AddConstraints (S, 𝐶 ∪ case)
3 result← true

4 split← null

5 for pg ∈ RelevantGroups(Π, sp) do
6 (resultpg, splitpg)← ComputeSP (Π,ℎ∗,S,𝑠𝑝 ,pg)
7 if resultpg = false then

8 result← resultpg
9 split← splitpg

10 break

11 end

12 end

13 if result = true then
14 return true

15 end

16 if split = null then
17 return false

18 end

19 for constr ∈ {split,¬split} do
20 if ¬SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, case ∪ {constr})

then

21 return false

22 end

23 end

24 return true

𝑠𝑝 are set according to the stratified definitions of 𝑠𝑝 from Sec-
tion 5.1: 𝑁 for𝑤 (𝑒𝑟)𝑖 , as we stratify over players; 2𝑁 \ {∅, 𝑁 } for
𝑐𝑟 , as we stratify over deviating subgroups; and {“none”} for 𝑝𝑟 .

The function ComputeSP in line 6 of Algorithm 1 stands for
ComputeWI, ComputeCR or ComputePR (Algorithms 2, 4 and 5), de-
pending on the security property 𝑠𝑝 , as summarized in Algorithm 3.
The result of ComputeSP depends on whether Γ with honest history
ℎ∗ satisfies property 𝑠𝑝 for/against pg, given the constraints in S.
Here, we also keep track of utility comparisons we cannot decide.
Importantly, the constraint 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥] to whether Γ satisfies
𝑠𝑝 in case is returned as splitpg, if it exists.

The loop in lines 5–12 of Algorithm 1 incorporates player-wise
security from Theorem 5.6. It additionally provides a necessary
case split if the security property is violated for a player group. Sub-
sequently, the respective results are returned: true for all groups
yields true; false but nothing to split on for at least one group
yields false; and false together with a split leads to further case

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

splits (lines 19–24). If we split the total orders into multiple cases,
all the cases have to return true for the property to be satisfied.

Example 6.2. Let us revisit the Market Entry game from Exam-
ple 2.2, but this time let us assume only 𝑝 > 0 is the initial constraint
and 𝑎 ∈ R can take any value. We check whether the honest his-
tory (𝑛) is collusion resilient. Algorithm 1 will in line 5 consider
each singleton player group individually, suppose we start with
{𝑀}. The function ComputeCR, specified in Algorithm 4, returns
(false, 0 ≥ −𝑎), as the comparison between 0 and −𝑎 is missing to
determine collusion resilience. So the result is set to false and split
to 0 ≥ −𝑎. For the colluding group {𝐸} the function ComputeCR
returns (true, null), as the honest player𝑀 can choose a collusion
resilient honest action. Algorithm 1 then proceeds with line 19,
refining the constraints by first adding 0 ≥ −𝑎 to the case. The
function SafisfiesProperty will return true (and empty split);
and then adding the negated constraint 0 < −𝑎 to the case, at which
point SafisfiesPropertywill return false, since𝑀 can profit by
deviating from the honest action (𝑛), as both 𝑝

2 and −𝑎 are better
utilities than 0. Algorithm 1 thus terminates by returning false.

The security-property-specific function variants of ComputeSP
recursively apply the compositional results of Theorem 5.7. To
illustrate case splitting of total orders, we only describe function
ComputeWI of Algorithm 2 below.

Algorithm 2: Function ComputeWI. The function ComputeWI
of Algorithm 2 is initially called with the entire game tree Γ from
function SatisfiesProperty of Algorithm 1. We then proceed
recursively, according to Theorem 5.8. Note that the player group
pg is just one player.

In a leaf, GetUtility in Algorithm 2 returns 𝑢𝑡 (®𝑥) as the utility
of player pg. We then – in line 2 of Algorithm 2 – check whether
the constraints in S together with 𝑢𝑡 (®𝑥) < 0 are unsat. This is
equivalent to the constraints in S implying 𝑢𝑡 (®𝑥) ≥ 0, which is
an instance of property (3), except that we do not (necessarily)
have one total order ⪯ at hand, only some constraints from case.
If the implication holds, we return true. Otherwise, we check the
opposite condition, by asking in line 5 of Algorithm 2 whether

∀®𝑥 .
∧

𝑐∈𝐶∪case
𝑐 [®𝑥] → 𝑢𝑡 [®𝑥] < 0 (4)

holds. If it does (line 6), the leaf is not weak immune. Otherwise
(line 8), the leaf’s weak immunity depends on the total order, which
induces a case split on 𝑢𝑡 [®𝑥] ≥ 0.

At a branch (lines 10–32 of Algorithm 2), we check inwhich of the
cases of Theorem 5.8 we are. We then call the function ComputeWI
recursively on immediate subgames Γ| (𝑎) and propagate the result
accordingly. Note that, for simplicity, in line 13 of Algorithm 2 we
do not wait for a null split that would immediately return false,
but rather proceed with a split. However, as there are only finitely
many possible case splits, we will eventually see the null split for a
false subtree if it exists and return it to reach the correct result.

Example 6.3. Wemimic the execution of the function ComputeWI
from Algorithm 2 on the Market Entry game from Example 2.2, but
this time only assume 𝑎 > 0 is the initial constraint, and 𝑝 ∈ R
can take any value. Suppose we enter Algorithm 2 with the entire
tree Γ𝑚𝑒 , honest history (𝑒, 𝑖) and player 𝑝𝑔 = 𝑀 . Since the root of

Algorithm 2: Function ComputeWI for Weak Immunity.
input :game tree Γ, honest history ℎ∗, set S containing

initial constraints and current case, player group
pg.

output : (result, split), where result states whether Γ is
weak immune for pg, given S, and split a crucial
utility comparison we cannot decide.

1 if isLeaf(Γ) then
2 if Check(S, GetUtility(Γ, pg) < 0) = unsat then
3 return (true, null)
4 end

5 if Check(S, GetUtility(Γ, pg) ≥ 0) = unsat then
6 return (false, null)
7 end

8 return (false, GetUtility(Γ, pg) ≥ 0)
9 end

10 if CurrentPlayer(Γ) ≠ pg then
11 for 𝑎 ∈ Actions(Γ) do
12 (result, split) ← ComputeWI(Γ| (𝑎) , ℎ∗, S, pg)
13 if result = false then

14 return (result, split)
15 end

16 end

17 return (true, null)
18 end

19 if AlongHonest(Γ, ℎ∗) then
20 𝑎∗ ← HonestAction(Γ, ℎ∗)
21 return ComputeWI(Γ| (𝑎∗) , ℎ∗, S, pg)
22 end

23 newsplit← null
24 for 𝑎 ∈ Actions(Γ) do
25 (result, split) ← ComputeWI(Γ| (𝑎) , ℎ∗, S, pg)
26 if result = true then
27 return (true, null)
28 else if split ≠ null then
29 newsplit← split
30 end

31 end

32 return (false, newsplit)

the tree is along the honest history, the function will jump to line
19, and recursively call ComputeWI for the honest subtree Γ𝑚𝑒 | (𝑒) .
Then the current player 𝐸 is not 𝑝𝑔, so we proceed with line 10,
and iterate through the actions 𝑝𝑤 and 𝑖 . Suppose we first look
at the action 𝑝𝑤 and from line 12 recursively compute the weak
immunity for the leaf after (𝑒, 𝑝𝑤). Algorithm 2 will execute lines 1
and 2, and since the utility of player𝑀 is 0, which is a non-negative
number, the check in line 2 will be unsat, so the function returns
(true, null). For the other action 𝑖 , we recursively compute (line
12 of the algorithm) the weak immunity for the leaf after (𝑒, 𝑖).
The function GetUtility(Γ𝑚𝑒 | (𝑒,𝑖),𝑀) will return 𝑝

2 , for which
we cannot decide whether it is non-negative (there are no initial

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

constraints on 𝑝). Both conditions from lines 2 and 5 are thus false
and we return the pair (false, 𝑝2 ≥ 0) in line 8. Proceeding from
the supertree Γ𝑚𝑒 | (𝑒) in line 12, with the result being false, we
return in line 14 the pair (false, 𝑝2 ≥ 0).

Theorem 6.4 (Correctness of Algorithm 1). The composi-
tional approach to compute the game-theoretic security of an input
instance Π for honest history ℎ∗ described in Algorithm 1 is sound
and complete. That is, SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, ∅) = true iff
Π with honest historyℎ∗ satisfies the property 𝑠𝑝 . Otherwise, it returns
false.

In addition to compositional security via Algorithm 1, our work
supports additional features to debug a protocol and better under-
stand its structure. Those include (i) strategy extraction in case the
considered security property was satisfied (Section 6.2), (ii) finding
counterexamples (Section 6.3), and (iii) providing weakest precondi-
tions to make the game secure otherwise. Computing preconditions
in our compositional setting can be done via collecting all cases,
where the security property is violated, and then conjoin and negate
them afterwards.

6.2 Extracting Compositional Strategies

The way compositional security analysis in Algorithm 1 works,
unfortunately, does not immediately provide witness strategies.
However, Algorithm 1 can still carry around enough information
to compute witnesses.

Theorem 6.5 (Weak(er) Immune Strategies). For a weak(er)
immune game Γ, with honest history ℎ∗ and total order ⪯, strategy 𝜎
is honest and weak(er) immune for all ®𝑥 satisfying ⪯, where

𝜎 := (𝜎𝑝1 , . . . , 𝜎𝑝 |𝑁 |) ,

and 𝜎𝑝𝑖 ∈ 𝒮𝑝𝑖 is a strategy for player 𝑝𝑖 . Strategy 𝜎𝑝𝑖 picks the honest
choice along the honest history, whereas at other nodes, where it is
𝑝𝑖 ’s turn, it picks an arbitrary action 𝑎 that yields a weak(er) immune
for 𝑝𝑖 subtree after action 𝑎.

Theorem 6.5 is constructive in nature, yielding thus an algo-
rithmic approach for extracting a weak(er) immune strategy. For
each player pg, function ComputeWI (and ComputeWERI) proceeds
as follows. If it is their turn after history ℎ, ℎ off ℎ∗, and we found
a weak(er) immune choice, we store this action as the choice of
a possible weak(er) immune and honest strategy 𝜎 . If the game
is weak(er) immune for all players, we can simply compute 𝜎 by
collecting all the stored choices throughout the tree.

Example 6.6. We compute the weak immune strategy of the
Market Entry game from Example 2.2 with honest history (𝑛),
whichwas analyzed as in Example 5.9. The strategy𝜎𝑀 for player𝑀
has to choose the honest action 𝑛 at the root, which is the only
choice point for𝑀 . The strategy 𝜎𝐸 for player 𝐸 needs to choose
one weaker immune subtree after history (𝑒). Since the subtree
after history (𝑒, 𝑖) is the only candidate, we set 𝜎𝐸 (𝑒) = 𝑖 . The
strategy 𝜎 = (𝜎𝑀 , 𝜎𝐸) is the desired weak immune strategy.

Collusion resilience and practicality also admit elegant methods
for deriving compositional strategies, as detailed in Appendix D.

6.3 Finding Compositional Counterexamples

Counterexamples to the security properties, as defined in Defini-
tions 3.10, 3.12 and 3.14, serve the important purpose of providing
attack vectors and thus pinpointing the weaknesses of a proto-
col underlying the considered game model. We use the following
pseudo-algorithms to compute counterexamples compositionally.

Compositional Counterexamples toWeak(er) Immunity. We
first store information during Algorithm 2: When analyzing the
weak(er) immunity for a player 𝑝 , whenever it is not 𝑝’s turn and
there exists an action leading to a not weak(er) immune subtree
(line 14 with split = null in Algorithm 2), we store the action, the
current history and the player 𝑝 .

Secondly, after the analysis terminated and the result was not
weak(er) immune, we generate a counterexample to the weak(er)
immunity of player 𝑝 by walking through the tree again. Assume
the current history is ℎ and we proceed from the root as follows.

• If 𝑝 is the current player and ℎ is along the honest history,
we follow the honest action to a subtree. This is sufficient
since an honest 𝑝 follows the honest history.
• If it is 𝑝’s turn butℎ is not along the honest history, all choices
had to lead to not weak(er) immune for 𝑝 subtrees for the
current tree to be not weak(er) immune for 𝑝 . We, therefore,
have to follow all choices to compute a counterexample.
• Otherwise, if it is not 𝑝’s turn, we check our stored data for
a not weak(er) immune for 𝑝 choice 𝑎. By construction and
using Theorem 5.8, it has to exist. We add it to our partial
strategy 𝑠𝑁−𝑝 , i.e. 𝑠𝑁−𝑝 (ℎ) = 𝑎. Then, we continue at history
(ℎ, 𝑎).
• At a leaf nothing has to be considered. A not weak(er) im-
mune for 𝑝 leaf leads to a negative (real) utility for 𝑝 .

According to Theorem 5.8, the steps outlined above provide a
player 𝑝 and a partial strategy 𝑠𝑁−𝑝 for the other players 𝑁 − 𝑝 , no
matter how the honest 𝑝 behaves off the honest history. It also yields
only negative utilities for 𝑝 and it thus provides a counterexample
to the weak(er) immunity of 𝑝 and, therefore, a counterexample to
the weak immunity of the game with the considered honest history.

It is also possible to compute all counterexamples to weak(er)
immunity. This can be done by simply storing all actions that lead
to not weak(er) immune subtrees.

Example 6.7. Let us adapt the Market Entry game from Exam-
ple 2.2 by changing the initial constraint on the variable 𝑝 to 𝑝 < 0.
The honest history (𝑛) is not weak immune for player 𝐸, as they get
a negative utility 𝑝 < 0 in the honest leaf. We can thus construct
the counterexample as follows: starting from the root, it is not 𝐸’s
turn and the not weak immune choice is (𝑛), so we add the action
𝑛 to the partial strategy for player𝑀 . We then continue at history
(𝑛), which is a leaf, so we are done.

Counterexamples to collusion resilience and practicality can also
be computed, which is detailed in Appendix D.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

7 Experimental Evaluation

We implemented the compositional security approach of Section 5
by exploiting its divide-and-conquer reasoning nature from Sec-
tion 6. Our implementation is available online in theCheckMate2.0
tool3.

Experimental Setup. We evaluated our tool using a machine
with 2 AMD EPYC 7502 CPUs clocked at 2.5GHz with 32 cores
and 1TB RAM using 16 game-theoretic security benchmarks. Our
dataset contains the 15 examples from Rain et al. [2024], which
include models of blockchain protocols along with game scenarios
of various sizes. Additionally, we detail later in this section one
large example, named 4-Player Routing, in order to showcase the
impact of interleaved sub- and supertree reasoning.

To the best of our knowledge, the only other automated approach
for game-theoretic security is the CheckMate framework [Rain et al.
2024]. Our experiments also compare CheckMate2.0 to CheckMate.

Experimental Results. Tables 1 and 2 summarize our experi-
ments, with further details in Appendix E. We report both on the
results of CheckMate2.0 and CheckMate; the respective columns
on times, nodes, and calls in Tables 1 and 2 detail these comparisons.
In particular, the columns “Nodes evaluated” and “Nodes evaluated
(reps)” of Table 1 indicate the number of game tree nodes visited
during the security analysis without and, respectively, with repe-
titions. The “Calls" column of Table 1 shows the number of calls
made to the SMT solver while proving the security property listed
in column 4.

Experimental Analysis. Table 1 demonstrates that the com-
positional approach of CheckMate2.0 significantly outperforms
the non-compositional CheckMate setting in execution time across
nearly all benchmarks. The scalability of CheckMate2.0 is espe-
cially evident in the Tic Tac Toe benchmark, which involves a
substantial 548,946 nodes. In this example, for the properties weak
immunity (wi), weaker immunity (weri), and collusion resilience
(cr), CheckMate2.0 completes the security analysis in approxi-
mately 5 seconds, whereas CheckMate requires between 255 and
287 seconds. When proving practicality (pr) of Tic Tac Toe, the
conventional CheckMate fails to terminate within 8 hours while
CheckMate2.0 succeeds in less than 37 seconds.

In some benchmarks, where a security property is not satisfied,
CheckMate2.0 explores significantly fewer nodes, see 3-Player
Routing for weak immunity and collusion resilience, the Pirate
game for weak immunity, and Auction for weak immunity and
collusion resilience.

We note that CheckMate2.0 requires considerably more SMT-
solving calls. Notable examples include the Closing Game (38,220
CheckMate2.0 calls vs. 1 CheckMate call for practicality), 3-Player
Routing (546,418 vs. 13 calls for practicality), and Tic Tac Toe (10,694
vs. 1 call for weak(er) immunity and collusion resilience). Despite
the higher number of SMT calls in CheckMate2.0, the SMT queries
generated byCheckMate2.0 are considerably smaller than the ones
of CheckMate; moreover, CheckMate2.0 calls inhabit a quantifier-
free fragment, easing reasoning significantly as reflected in the
improved execution times.

3https://github.com/apre-group/checkmate/tree/CCS25

In general, CheckMate2.0 analysis may occasionally result also
in suboptimal splits, leading to longer execution times. This issue is
exemplified in the Closing game when analyzing practicality of the
honest history (𝐶ℎ, 𝑆). Additionally, analyzing collusion resilience
can sometimes take longer, particularly when more players are
involved, for example in the Pirate game. This might be explained
by the very large number of colluding groups combined with a small
game resulting in many trivial SMT calls compared to CheckMate.

Counterexamples and Strategies. Table 2 presents theCheck-
Mate2.0 runtimes to generate counterexamples compared to Check-
Mate, for selected benchmarks. It reports the execution time re-
quired to find one counterexample (for one case split) as well as
finding all counterexamples in all cases for violated security prop-
erties. The former is useful for quickly identifying scenarios where
the property is not met, while the latter proves particularly helpful
when revising and refining a protocol. Comprehensive data for all
benchmarks can be found in Appendix E.

The use of compositionality in CheckMate2.0 demonstrates no-
table improvements in execution time, particularly when retrieving
all counterexamples. Additionally, the execution times for compo-
sitional analysis with and without counterexample extraction are
quite similar, indicating that CheckMate2.0 enables counterex-
ample extraction with minimal overhead. The counterexamples to
collusion resilience for the Pirate game show this clearly. While
CheckMate2.0 requires slightly more time for property analysis
compared to CheckMate, we note that the new CheckMate2.0
identifies all counterexamples across all cases in approximately 3
seconds, whereas CheckMate takes almost 80 seconds. Similarly,
in the case of the 3-Player Routing game, CheckMate2.0 retrieves
all counterexamples for all cases within 291 seconds, while it takes
CheckMate over 3,000 seconds (50 minutes).

Similar benefits of CheckMate2.0 can also be observed for strat-
egy extraction, with details in Appendix E.

Sub- and Supertree Reasoning. One of the most significant
contributions of the compositional reasoning is that CheckMate2.0
enables analyzing subtrees independently and integrating only their
security results in the supertree. This feature of CheckMate2.0 is
particularly beneficial in larger models. For instance, the 3-Player
Routing and Routing Unlocking benchmarks based on the routing
protocol [Poon and Dryja 2016] are generated using a script, as it is
not feasible to model protocols of this size manually. Modeling the
routing protocol for 3 players results in a game with 21,688 nodes
(3-Player Routing), taking 20 MB on disk.

We next detail a more challenging routing example with 4 play-
ers, called 4-Player Routing, which has 144,342,306 nodes. This
example exceeds our 200 GB of allocated disk space, and thus could
not even be created fully. However, by leveraging compositionality,
we intertwine model generation and analysis, making it possible
to discard generated subtrees after the results of security analysis
have been obtained. Specifically, during the game generation pro-
cess, each subtree corresponding to a specific phase of the protocol
called unlocking phase (a total of 1440 subtrees) is analyzed on
the fly, with only the results kept. The final outcome, the 4-Player
Routing game, is a supertree with 396 regular nodes and 1440 nodes
representing subtrees, or 1,836 nodes in total. The supertree has a
size of about 60 MB and in it all subtrees for the unlocking phase

https://github.com/apre-group/checkmate/tree/CCS25

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Game Nodes Players Property Secure Time Nodes Nodes Calls

yes/no evaluated evaluated (reps)

CheckMate2.0/CheckMate
Pirate 79 4 wi n 0.010 / 0.015 10 / 79 10 / 316 5 / 1
(𝑦, 𝑛, 𝑛 cr n 0.041 / 0.029 79 / 79 622 / 1,106 368 / 4
𝑛,𝑦,𝑦) pr n 0.036 / 0.049 79 / 79 482 / 79 554 / 8
Auction 92 4 wi n 0.012 / 0.033 16 / 92 16 / 368 9 / 1
(𝐸, 𝐸, 𝐼 , 𝐼) cr n 0.018 / 0.030 66 / 92 128 / 1,288 103 / 1
Closing 221 2 wi y 0.011 / 0.024 20 / 221 22 / 442 16 / 1
(𝐻) weri y 0.010 / 0.021 20 / 221 22 / 442 16 / 1

cr y 0.012 / 0.023 44 / 221 46 / 442 36 / 1
pr n 0.097 / 0.346 221 / 221 568 / 221 1454 / 1

(𝐶ℎ, 𝑆) wi y 0.011 / 0.024 33 / 221 36 / 442 25 / 1
weri y 0.011 / 0.020 33 / 221 36 / 442 25 / 1
cr y 0.013 / 0.023 60 / 221 63 / 442 48 / 1
pr y 2.144 / 0.345 221 / 221 14353 / 221 38220 / 1

3-Player 21,688 3 wi n 0.248 / 0.984 16 / 21,688 16 / 65,064 9 / 1
Routing weri y 0.514 / 1.008 7,084 / 21,688 7,570 / 65,064 5,441 / 1
(𝑆𝐻 , 𝐿, 𝐿, cr n 0.272 / 1.886 430 / 21,688 474 / 130,128 299 / 1
𝑈 ,𝑈) pr n 33.162 / 34.717 21,688 / 21,688 416,156 / 21,688 569,418 / 13
Tic Tac Toe 549,946 2 wi y 5.276 / 255.368 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
(𝐶𝑀, 𝑅𝑈 , 𝐿𝑈 , weri y 5.256 / 255.600 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
𝑅𝐷, 𝑅𝑀, 𝐿𝑀, cr y 5.302 / 286.574 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
𝐶𝑈 ,𝐶𝐷, 𝐿𝐷) pr y 36.530 / TO 549946 / TO 549946 / TO 527198 / TO

Table 1: Selected experimental results of game-theoretic security, using the compositional CheckMate2.0 approach and the

non-compositional CheckMate setting of [Rain et al. 2024]. A full summary of our experiments is in Appendix E. Runtimes are

given in seconds, with timeout (TO) after 8 hours. For each game, columns 2–3 list the size (tree nodes and game players) of

the game from column 1. Column 4 shows the game-theoretic security property we analyzed and (dis)proved, as indicated in

column 5. Columns 6–9 present the results of CheckMate2.0 compared to CheckMate, using the slash / sign.

Game Property Time (one CE) Time (all CEs)

CheckMate2.0/CheckMate CheckMate2.0/CheckMate

Pirate cr 0.041 / 0.039 3.232 / 79.839
(𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦)
Auction wi 0.012 / 0.048 0.025 / 4.172
(𝐸, 𝐸, 𝐼 , 𝐼) cr 0.018 / 0.066 0.036 / 15.106
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈) cr 0.279 / 5.619 1.657 / 7.815

pr 33.561 / 46.480 291.236 / 3 033.784
Table 2: Selected experiments on counterexample (CE) generation using our CheckMate2.0 approach and the non-

compositional CheckMate tool of [Rain et al. 2024]. Full details and experiments are given Appendix E. Runtimes are given in

seconds.

have already been solved. This allows us to directly apply Check-
Mate2.0 to the supertree. Using CheckMate2.0 compositionally,
we conclude that 4-Player Routing is weaker immune, but not weak
immune, nor collusion resilient, nor practical.

8 Related Work and Conclusions

We present the first approach to compositionally analyze the se-
curity properties of game-theoretic protocol models. By mapping
our work to SMT-based reasoning in combination, we introduce

a divide-and-conquer framework to automate compositional rea-
soning in a sound and complete manner. Our experiments clearly
showcase scalability improvements, especially for real-world pro-
tocols with millions of nodes/actions.

Our compositional approach is a strong enhancement over the
non-compositional setting of [Brugger et al. 2023]. We not only
improve practical usage but also provide a sound and complete way
to split and combine game-theoretic properties of subgames/super-
games. Compared to [Brugger et al. 2023], we minimize the use of
SMT solving by applying it only over game leaves.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

Compositional game theory, without considering game-theore-
tic security, is also addressed in [Bolt et al. 2023; Ghani et al. 2018,
2020]. Here, so-called open games are introduced to represent games
played relative to a given environment. Open games are, however,
restricted to constant numeric utilities and assuming rational behav-
ior of players. Unlike these works, we work with symbolic utilities
and capture honest/rational behavior, and thus security, in games.

Related to compositional verification, [Wesley et al. 2021] pre-
sents compositional analysis of smart contracts. Instead of verifying
a smart contract relative to all users, a few representative users
are chosen, thereby avoiding intractability due to state explosion.
While game-theoretic security is not addressed in [Wesley et al.
2021], program verification and synthesis are worthy approaches
to be further considered in our future work.

Importantly, (automatically) synthesizing game models from
the protocol’s definition, respectively source code in the case of
smart contracts, is a challenge we aim to address in the future.
Allowing infinite games and modeling game actions impacted by
external factors are other tasks for future work, allowing us to
model uncontrollable protocol effects, such as price changes.

Acknowledgments

This research was funded in whole or in part by the ERC Con-
solidator Grant ARTIST 101002685, the Austrian Science Fund
(FWF) SPyCoDe Grant 10.55776/F85, the WWTF Grant ForSmart
10.47379/ICT22007, the TU Wien Doctoral College SecInt, the Ama-
zon Research Award 2023 QuAT, and a Netidee Fellowship 2022.

References

Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. In Handbook of
Model Checking. Springer, UC Berkeley, 305–343.

Nikolaj S. Bjørner and Lev Nachmanson. 2024. Arithmetic Solving in Z3. In CAV.
Springer, Cham, 26–41. https://doi.org/10.1007/978-3-031-65627-9_2

Bruno Blanchet. 2014. Automatic Verification of Security Protocols in the Sym-
bolic Model: The Verifier ProVerif. In Foundations of Security Analysis and Design.
Springer, Cham, 54–87. https://doi.org/10.1007/978-3-319-10082-1_3

Joe Bolt, Jules Hedges, and Philipp Zahn. 2023. Bayesian open games. Compositionality
5 (Oct. 2023), 9. https://doi.org/10.32408/compositionality-5-9

Lea Salome Brugger, Laura Kovács, Anja Petkovic Komel, Sophie Rain, and Michael
Rawson. 2023. CheckMate: Automated Game-Theoretic Security Reasoning. In CCS
(<conf-loc>, <city>Copenhagen</city>, <country>Denmark</country>, </conf-
loc>). Association for Computing Machinery, New York, NY, USA, 1407–1421.
https://doi.org/10.1145/3576915.3623183

Vitalik Buterin. 2015. A Next-Generation Smart Contract and Decentralized Applica-
tion Platform.

Neil Ghani, Jules Hedges, Viktor Winschel, and Philipp Zahn. 2018. Compositional
Game Theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing
Machinery, New York, NY, USA, 472–481. https://doi.org/10.1145/3209108.3209165

Neil Ghani, Clemens Kupke, Alasdair Lambert, and Fredrik Nordvall Forsberg. 2020.
Compositional Game Theory with Mixed Strategies: Probabilistic Open Games
Using a Distributive Law. Electronic Proceedings in Theoretical Computer Science
323 (Sept. 2020), 95–105. https://doi.org/10.4204/eptcs.323.7

Nadim Kobeissi, Georgio Nicolas, and Mukesh Tiwari. 2020. Verifpal: Cryptographic
Protocol Analysis for the Real World. In Progress in Cryptology. Springer Interna-
tional Publishing, Cham, 151–202.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In CAV. Springer, Berlin,
Heidelberg, 696–701.

Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash System.
Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. The MIT

Press, Cambridge, USA.
Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments.
Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. 2023. Towards a

Game-Theoretic Security Analysis of Off-Chain Protocols. In CSF. IEEE Computer
Society, Los Alamitos, CA, USA, 31–46.

Sophie Rain, Lea Salome Brugger, Anja Petković Komel, Laura Kovács, and Michael
Rawson. 2024. Scaling CheckMate for Game-Theoretic Security. In Proceedings
of 25th Conference on Logic for Programming, Artificial Intelligence and Reasoning
(EPiC Series in Computing, Vol. 100), Nikolaj Bjørner, Marijn Heule, and Andrei
Voronkov (Eds.). EasyChair, Stockport, UK, 222–231. https://doi.org/10.29007/llnq

Raymond M Smullyan. 1995. First-Order Logic. Dover Publications, New York.
Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody Born,

Immad Naseer, and Kostas Ferles. 2019. Formal Verification of Workflow Policies for
Smart Contracts in Azure Blockchain. In VSTTE. Springer International Publishing,
Cham, 87–106.

Scott Wesley, Maria Christakis, Jorge A. Navas, Richard Trefler, Valentin Wüstholz,
and Arie Gurfinkel. 2021. Compositional Verification of Smart Contracts Through
Communication Abstraction. In Static Analysis: 28th International Symposium, SAS
2021, Chicago, IL, USA, October 17–19, 2021, Proceedings (Chicago, IL, USA). Springer-
Verlag, Berlin, Heidelberg, 429–452. https://doi.org/10.1007/978-3-030-88806-0_21

Paolo Zappalà, Marianna Belotti, Maria Potop-Butucaru, and Stefano Secci. 2021. Game
Theoretical Framework for Analyzing Blockchains Robustness. , 18 pages.

https://doi.org/10.1007/978-3-031-65627-9_2
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.32408/compositionality-5-9
https://doi.org/10.1145/3576915.3623183
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.4204/eptcs.323.7
https://doi.org/10.29007/llnq
https://doi.org/10.1007/978-3-030-88806-0_21

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

A Compositionality Proofs

We restate the theorems for readability.

Theorem 3.9 (CompositionalGame-Theoretic Securitywith
Total Orders). For an EFG Γ with honest history ℎ∗ and a finite set
of initial constraints 𝐶 , property (1) is equivalent to

∀(⪯,𝑇𝑢) ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗∧

∀®𝑥 .
∧

𝑐∈𝐶∪⪯
𝑐 [®𝑥] → 𝑠𝑝 (𝜎) [®𝑥] . (2)

Proof. To show implication “⇐”, we pick arbitrary values for
the variables ®𝑥 that satisfy all initial constraints in 𝐶 . We then
consider the total order ⪯ on𝑇𝑢 that is consistent with the choice of
values for variables ®𝑥 . By Equation (2), there has to exist a strategy 𝜎
yielding the honest history such that for all ®𝑥 consistent with ⪯ and
satisfying the initial constraints 𝐶 the security property 𝑠𝑝 (𝜎) [®𝑥]
holds. Since the picked ®𝑥 satisfies ⪯ and 𝐶 , the strategy 𝜎 works.
Hence, 1 is implied.

For implication “⇒”, let ⪯ be an arbitrary total order over the
symbolic terms 𝑇𝑢 and ®𝑥 values that satisfy ⪯ as well as 𝐶 . Then,
from (1) there exists an honest strategy 𝜎 such that 𝑠𝑝 (𝜎) [®𝑥]. Note
that whether 𝑠𝑝 (𝜎) [®𝑥] holds, depends only on the relation of terms
in 𝑇𝑢 and not on the actual values of ®𝑥 . Therefore, 𝑠𝑝 (𝜎) [®𝑥] is true
for one ®𝑥 iff it is true for all ®𝑥 consistent with the same term order
⪯. Thus, 2 holds. □

Theorem 5.1 (Eqivalence of Non-Secure Games). A game
Γ with honest history ℎ∗ violates one of the security properties of
weak(er) immunity, collusion resilience, or practicality iff there exists
a history ℎ along the honest history ℎ∗ such that Γ|ℎ violates the
respective security property.

Proof. The direction "Γ violates security property⇒ ∃ℎ ∈ℋ.

ℎ along ℎ∗ ∧ Γ|ℎ violates security property" is easy to show. Just
pick the trivial history ℎ = ∅, which is always along the honest
history.

For the other direction, we consider the security properties indi-
vidually. We start with weak immunity and assume that Γ|ℎ is along
the honest history ℎ∗ and is not weak immune. We fix an arbitrary
strategy 𝜎 ∈ 𝒮 in the entire game Γ that yields the honest history
𝐻 (𝜎) = ℎ∗ and show it is not weak immune. To do so, we consider
𝜎 |ℎ ∈ 𝒮|ℎ which still yields the honest history in the subgame:
𝐻 |ℎ (𝜎 |ℎ) = ℎ∗|ℎ . Since Γ|ℎ is not weak immune, there exists a player

𝑝 ∈ 𝑁 and a strategy 𝜏ℎ ∈ 𝒮|ℎ such that 𝑢 |ℎ,𝑝 (𝜏ℎ𝑁−𝑝 , 𝜎 |ℎ,𝑝) < 0.

We now construct a strategy 𝜏 ∈ 𝒮 extending 𝜏ℎ . I.e. 𝜏 |ℎ = 𝜏ℎ .
Everywhere else we set 𝜏 to be identical to 𝜎 .

Since 𝜎 yields the honest history, 𝐻 (𝜎) = ℎ∗, and Γ|ℎ lies along
the honest history, we get 𝐻 (𝜏𝑁−𝑝 , 𝜎𝑝) = (ℎ, 𝐻 |ℎ (𝜏 |ℎ,𝑁−𝑝 , 𝜎 |ℎ,𝑝)).
By construction of 𝜏 also 𝐻 (𝜏𝑁−𝑝 , 𝜎𝑝) = (ℎ, 𝐻 |ℎ (𝜏ℎ𝑁−𝑝 , 𝜎 |ℎ,𝑝))
holds. Thus, their utilities have to be identical 𝑢𝑝 (𝜏𝑁−𝑝 , 𝜎𝑝) =

𝑢 |ℎ,𝑝 (𝜏ℎ𝑁−𝑝 , 𝜎 |ℎ,𝑝) < 0. Hence, 𝜎 is not weak immune and as it was
chosen arbitrarily, it follows that Γ with honest history ℎ∗ is not
weak immune. The proof for weaker immunity is analog.

The proof of the second direction for collusion resilience follows
the same idea. We pick an arbitrary 𝜎 ∈ 𝒮 yielding the honest
history ℎ∗ and show it is not collusion resilient, assuming that Γ|ℎ is

along the honest history and is not collusion resilient. Hence there
exists a deviating group 𝑆 ⊂ 𝑁 and a strategy 𝜏ℎ ∈ 𝒮|ℎ such that∑
𝑝∈𝑆 𝑢 |ℎ,𝑝 (𝜎 |ℎ) <

∑
𝑝∈𝑆 𝑢 |ℎ,𝑝 (𝜎 |ℎ,𝑁−𝑆 , 𝜏ℎ𝑆). We again construct

a strategy 𝜏 ∈ 𝒮 extending 𝜏ℎ : 𝜏 |ℎ = 𝜏ℎ . Everywhere else 𝜏 is
identical to 𝜎 . Applying the same reasoning as before, we know that
𝐻 (𝜎𝑁−𝑆 , 𝜏𝑆) = (ℎ, 𝐻 |ℎ (𝜎 |ℎ,𝑁−𝑆 , 𝜏ℎ𝑆)) as well as𝐻 (𝜎) = (ℎ, 𝐻 (𝜎 |ℎ)),
which implies ∑︁

𝑝∈𝑆
𝑢𝑝 (𝜎) =

∑︁
𝑝∈𝑆

𝑢 |ℎ,𝑝 (𝜎 |ℎ)

<
∑︁
𝑝∈𝑆

𝑢 |ℎ,𝑝 (𝜎 |ℎ,𝑁−𝑆 , 𝜏ℎ𝑆) =
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) . (5)

Therefore, 𝜎 is not collusion resilient, and since it was chosen
arbitrarily, it follows that Γ with honest history ℎ∗ is not collusion
resilient.

Proving this for practicality is straightforward: we again pick
an arbitrary honest strategy 𝜎 ∈ ℋ and assume ℎ ∈ ℋ is along
the honest history and Γ|ℎ is not practical. I.e. there exists a his-
tory 𝑘 ∈ ℋ|ℎ , a player 𝑝 ∈ 𝑁 and a strategy 𝜏 ∈ 𝒮| (ℎ,𝑘) such
that 𝑢 | (ℎ,𝑘),𝑝 (𝜎 | (ℎ,𝑘)) < 𝑢 | (ℎ,𝑘),𝑝 (𝜏𝑝 , 𝜎 | (ℎ,𝑘),𝑁−𝑝). Using now ℓ :=
(ℎ, 𝑘) ∈ℋ, the player 𝑝 and 𝜏 , one can see easily that

𝑢 |ℓ,𝑝 (𝜎 |ℓ) < 𝑢 |ℓ,𝑝 (𝜏𝑝 , 𝜎 |ℓ,𝑁−𝑝)
and therefore 𝜎 is not practical and neither is Γ. □

Theorem 5.6 (Player-Wise Security Properties). A game Γ
satisfies a security property iff it satisfies the respective security prop-
erty player-wise. That is, the following equivalences hold:

(1) Γ weak immune⇔∀𝑝 ∈ 𝑁 . Γ weak immune for 𝑝 .
(2) Γ weaker immune⇔∀𝑝 ∈ 𝑁 . Γ weaker immune for 𝑝 .
(3) Γ collusion resilient⇔∀𝑆 ⊂ 𝑁 . Γ collusion resilient against 𝑆 .
(4) Γ practical⇔ Γ practical for the current player.

Proof of Theorem 5.6.1-2. We start with equivalence (1) for
weak immunity.

Implication “ ⇒”. By Definition 3.1 the game Γ, with honest
history ℎ∗, is weak immune if

∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮. 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 . (𝑤𝑖)

Assuming Γ is weak immune, we consider such a strategy and call
it 𝜎′. The right-hand side of the equivalence is

∀𝑝 ∈ 𝑁 ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝜏 ∈ 𝒮. 𝑢𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0 .

(𝑤𝑖∀𝑝)

Therefore, we can just pick 𝜎′ for all the players and are done.
Implication “ ⇐”. We assume Equation (𝑤𝑖∀𝑝), i.e. Γ is weak

immune for all players 𝑝𝑖 ∈ 𝑁 , 𝑖 = 1, . . . , 𝑛, where 𝑛 = |𝑁 |. Let
their corresponding weak immune for 𝑝𝑖 strategies be 𝜎𝑖 ∈ 𝒮, for
𝑖 = 1, . . . , 𝑛. Further let 𝜎 ∈ 𝒮 be a new strategy constructed from
the 𝜎𝑖 in the following way 𝜎 := (𝜎1𝑝1 , . . . , 𝜎

𝑛
𝑝𝑛
). That means at a

history ℎ where it is player 𝑝𝑖 ’s turn, the choice in 𝜎 is the one
from 𝜎𝑖 : 𝜎 (ℎ) = 𝜎𝑖 (ℎ). The strategy 𝜎 yields the honest history
𝐻 (𝜎) = ℎ∗, since all 𝜎𝑖 yield ℎ∗ and combining strategies that
extend the same history leads to the new strategy extending the
same one.

It remains to show that 𝜎 is weak immune, i.e. that this one
strategy works for all the players (right conjunct in Equation (𝑤𝑖)).

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

We therefore consider an arbitrary player 𝑝𝑖 ∈ 𝑁 and an arbitrary
strategy 𝜏 ∈ 𝒮. By construction of 𝜎 and the fact that 𝜎𝑖 is weak
immune for 𝑝𝑖 , it follows 𝑢𝑝𝑖 (𝜎𝑝𝑖 , 𝜏𝑁−𝑝𝑖) = 𝑢𝑝𝑖 (𝜎𝑖𝑝𝑖 , 𝜏𝑁−𝑝𝑖) ≥ 0.
This concludes the proof that 𝜎 is weak immune, which implies
that Γ is weak immune.

The proof of Theorem 5.6.2 is analog. □

Proof of Theorem 5.6.3. Implication “⇒”. For readability, let
us restate the formula for collusion resilience of Γ

∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝑆 ⊂ 𝑁 ∀𝜏 ∈ 𝒮.∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜏𝑆 , 𝜎𝑁−𝑆) , (𝑐𝑟)

as well as for collusion resilience against all subgroups of the game Γ

∀𝑆 ⊂ 𝑁 ∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀𝜏 ∈ 𝒮.∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎) ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜏𝑆 , 𝜎𝑁−𝑆) . (𝑐𝑟∀𝑆)

The implication then again follows from the definitions 𝑐𝑟 and 𝑐𝑟∀𝑆 .
The one strategy 𝜎 in 𝑐𝑟 can be used for all 𝑆 ⊂ 𝑁 in 𝑐𝑟∀𝑆 .

Implication “ ⇐”. We prove this direction by contraposition,
showing ¬𝑐𝑟 ⇒ ¬𝑐𝑟∀𝑆 . In [Brugger et al. 2023], it is shown that ¬𝑐𝑟
is equivalent to the existence of a counterexample (Definition 3.12):
There exists a set of deviating players 𝑆 together with their strategy
𝑠𝑆 such that 𝑠𝑆 extended by any strategy 𝜎′

𝑁−𝑆 of players 𝑁 −
𝑆 , which follows the honest history ℎ∗, yields a terminal history
𝐻 (𝜎′

𝑁−𝑆 , 𝑠𝑆) = 𝑡𝜎 ′
𝑁 −𝑆

with∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡𝜎 ′
𝑁 −𝑆
) >

∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗) (6)

Let a group of deviating players 𝑆 ⊂ 𝑁 and their strategy 𝑠𝑆 be
a counterexample. To show ¬𝑐𝑟∀𝑆 we fix an arbitrary 𝜎 ∈ 𝒮 that
yields the honest history ℎ∗. For the strategy 𝜏 = (𝑠𝑆 , 𝜎𝑁−𝑆) we
have by Equation (6): ∑︁

𝑝∈𝑆
𝑢𝑝 (𝜎) =

∑︁
𝑝∈𝑆

𝑢𝑝 (ℎ∗)

<
∑︁
𝑝∈𝑆

𝑢𝑝 (𝐻 (𝜎𝑁−𝑆 , 𝑠𝑆)) =
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜏𝑆 , 𝜎𝑁−𝑆) .

Therefore, ¬𝑐𝑟∀𝑆 holds and implication “⇐” is proven.
□

Proof of Theorem 5.6.4. Implication “⇒”.We again restate the
formulae for better readability. Practicality of Γ:

∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀ℎ ∈ℋ ∀𝑝 ∈ 𝑁 ∀𝜏 ∈ 𝒮|ℎ .
𝑢 |ℎ,𝑝 (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑝 (𝜎 |ℎ,𝑁−𝑝 , 𝜏𝑝) (𝑝𝑟)

and practicality for the current player of Γ:

∃𝜎 ∈ 𝒮. 𝐻 (𝜎) = ℎ∗ ∧ ∀ℎ ∈ℋ ∀𝜏 ∈ 𝒮|ℎ .
𝑢 |ℎ,𝑃 (ℎ) (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑃 (ℎ) (𝜎 |ℎ,𝑁−𝑃 (ℎ) , 𝜏𝑃 (ℎ)) . (𝑝𝑟𝑃 (ℎ))

It is now easy to see that 𝑝𝑟 implies 𝑝𝑟𝑃 (ℎ) , since for all ℎ ∈ ℋ,
𝑃 (ℎ) ∈ 𝑁 .

Implication “⇐”. Assuming Equation (𝑝𝑟𝑃 (ℎ)) holds, we fix 𝜎

that satisfies it and show 𝜎 also satisfies Equation (𝑝𝑟). Let ℎ ∈ℋ,
𝑝 ∈ 𝑁 and 𝜏 ∈ 𝒮|ℎ as in (𝑝𝑟) be arbitrary.

If 𝑝 = 𝑃 (ℎ), then the inequality 𝑢 |ℎ,𝑝 (𝜎 |ℎ) ≥ 𝑢 |ℎ,𝑝 (𝜎 |ℎ,𝑁−𝑝 , 𝜏𝑝)
is immediately implied by 𝑝𝑟𝑃 (ℎ) . If 𝑝 ≠ 𝑃 (ℎ), we consider the
first point in 𝐻 |ℎ (𝜎 |ℎ) where it is player 𝑝’s turn and call the corre-
sponding history 𝑡 ∈ℋ|ℎ . In case no such 𝑡 exists, then 𝐻 |ℎ (𝜎 |ℎ) =
𝐻 |ℎ (𝜎 |ℎ,𝑁−𝑝 , 𝜏𝑝), and hence 𝑢 |ℎ,𝑝 (𝜎 |ℎ) = 𝑢 |ℎ,𝑝 (𝜎 |ℎ,𝑁−𝑝 , 𝜏𝑝).

If such a 𝑡 exists, we know from (𝑝𝑟𝑃 (ℎ)) that 𝑢 | (ℎ,𝑡),𝑝 (𝜎 | (ℎ,𝑡)) ≥
𝑢 | (ℎ,𝑡),𝑝 (𝜎 | (ℎ,𝑡),𝑁−𝑝 , 𝜏 |𝑡,𝑝), since 𝑝 = 𝑃 (ℎ, 𝑡). From the fact that 𝑡
lies along 𝐻 |ℎ (𝜎 |ℎ) follows 𝑢 | (ℎ,𝑡),𝑝 (𝜎 | (ℎ,𝑡)) = 𝑢 |ℎ,𝑝 (𝜎 |ℎ), and as
player 𝑝 has no choices in 𝑡 , it follows

𝐻 |ℎ (𝜎 |ℎ,𝑁−𝑝 , 𝜏𝑝) = (𝑡, 𝐻 | (ℎ,𝑡) (𝜎 | (ℎ,𝑡),𝑁−𝑝 , 𝜏 |𝑡,𝑝))
which leads to identical utilities. Therefore, the inequality in 𝑝𝑟 is
also proven for 𝑝 ≠ 𝑃 (ℎ). This concludes the proof of the theorem,
as ℎ, 𝑝 , and 𝜏 were chosen arbitrarily. □

Theorem 5.8 (Compositional Weak Immunity). Let Γ be an
EFG with honest history ℎ∗ and 𝑝 ∈ 𝑁 a player. The following hold.

1) A leaf of Γ is weak immune for 𝑝 iff 𝑝’s utility is non-negative:

∀𝑡 ∈ 𝒯. 𝑤𝑖𝑝 (Γ|𝑡) ⇔ 𝑢𝑝 (𝑡) ≥ 0 .

2) A branch of Γ is weak immune for 𝑝 , where 𝑝 is not the current
player, iff all children are weak immune for 𝑝 :

∀ℎ ∈ℋ\𝒯. 𝑝 ≠ 𝑃 (ℎ) ⇒
(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ) .𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

3) A branch of Γ along the honest history ℎ∗ is weak immune for
the current player 𝑝 , iff the child following ℎ∗ is weak immune for 𝑝 .
Let 𝑎∗ ∈ 𝐴(ℎ) be the honest choice, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ along ℎ∗ ⇒(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ 𝑤𝑖𝑝 (Γ| (ℎ,𝑎∗))

)
.

4) A branch of Γ off the honest history ℎ∗ is weak immune for the
current player 𝑝 , iff there exists a child that is weak immune for 𝑝 :

∀ℎ ∈ℋ \𝒯. 𝑝 = 𝑃 (ℎ) ∧ ℎ off ℎ∗ ⇒(
𝑤𝑖𝑝 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ) . 𝑤𝑖𝑝 (Γ| (ℎ,𝑎))

)
.

Proof. We start by proving 1). By Definition 3.1, there has to
exist a strategy 𝜎 ∈ 𝒮|𝑡 such that for all 𝜏 ∈ 𝒮|𝑡 𝑢 |𝑡,𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0.
But for a terminal history 𝑡 ∈ 𝒯, the utility function 𝑢 |𝑡,𝑝 = 𝑢𝑝 (𝑡)
is just a constant and the only strategy in 𝒮|𝑡 is the empty strategy.
Thus, equivalence 1) holds by definition.

For equivalence 2), let ℎ ∈ ℋ \ 𝒯 be a non-terminal history
such that 𝑝 is not the current player 𝑝 ≠ 𝑃 (ℎ). We prove im-
plication “⇒” first: Assuming Γ|ℎ is weak immune for 𝑝 , there
exists a strategy 𝜎 ∈ 𝒮ℎ such that – if ℎ is along ℎ∗, it yields
the honest history and – for all 𝜏 ∈ 𝒮|ℎ the player 𝑝’s utility
𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0. Let now 𝑎 ∈ 𝐴(ℎ) be an arbitrary choice
after history ℎ. We consider 𝜎 | (𝑎) ∈ 𝒮| (ℎ,𝑎) – if (ℎ, 𝑎) along ℎ∗,
then 𝐻 | (ℎ,𝑎) (𝜎 | (𝑎)) = ℎ∗| (ℎ,𝑎) . Let further 𝜏

𝑎 ∈ 𝒮| (ℎ,𝑎) be arbitrary.
For 𝜏 ′ ∈ 𝒮|ℎ , such that 𝜏 ′| (𝑎) = 𝜏𝑎 and 𝜏 ′ (ℎ) = 𝑎 we know by as-
sumption that 𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏 ′𝑁−𝑝) ≥ 0. Since 𝑝 ≠ 𝑃 (ℎ) and 𝜏 ′ (ℎ) = 𝑎,
it follows 𝐻 |ℎ (𝜎𝑝 , 𝜏 ′𝑁−𝑝) = (𝑎, 𝐻 | (ℎ,𝑎) (𝜎 | (𝑎),𝑝 , 𝜏

𝑎
𝑁−𝑝)). Therefore,

𝑢 | (ℎ,𝑎),𝑝 (𝜎 | (𝑎),𝑝 , 𝜏𝑎𝑁−𝑝) = 𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏 ′𝑁−𝑝) ≥ 0. As 𝜏 ′ was chosen
arbitrarily, 𝜎 | (𝑎) was constructed based on 𝑎, and 𝑎 was also cho-
sen arbitrarily, it follows the right-hand side of the equivalence:
∀𝑎 ∈ 𝐴(ℎ) . 𝑤𝑖𝑝 (Γ| (ℎ,𝑎)).

To show implication “⇐”, we assume ∀𝑎 ∈ 𝐴(ℎ) . 𝑤𝑖𝑝 (Γ| (ℎ,𝑎))
and we construct a 𝜎′ ∈ 𝒮|ℎ weak immune for 𝑝 . For all 𝑎 ∈ 𝐴(ℎ) let

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

𝜎′| (𝑎) := 𝜎𝑎 , where 𝜎𝑎 ∈ 𝒮| (ℎ,𝑎) weak immune for 𝑝 – and if (ℎ, 𝑎)
along ℎ∗, then 𝜎𝑎 also yields the honest history. Such strategies
have to exist according to our assumptions. If ℎ is along ℎ∗, then
define 𝜎′ (ℎ) := 𝑎∗, where 𝑎∗ is the next choice in ℎ∗ after ℎ, which
makes 𝐻 |ℎ (𝜎′) = ℎ∗

ℎ
. Otherwise, let it be arbitrary. For an arbitrary

𝜏 ∈ 𝒮|ℎ , call 𝜏 (ℎ) = 𝑎′. Since 𝑝 ≠ 𝑃 (ℎ), follows 𝐻 |ℎ (𝜎′𝑝 , 𝜏𝑁−𝑝) =
(𝑎′, 𝐻 | (ℎ,𝑎′) (𝜎𝑎𝑝 , 𝜏 | (ℎ,𝑎),𝑁−𝑝)). Hence, as 𝜎𝑎 was weak immune for
𝑝 , we get 𝑢 |ℎ,𝑝 (𝜎′𝑝 , 𝜏𝑁−𝑝) = 𝑢 | (ℎ,𝑎′),𝑝 (𝜎𝑎𝑝 , 𝜏 | (ℎ,𝑎),𝑁−𝑝) ≥ 0. Strat-
egy 𝜏 was chosen arbitrarily; therefore, Γ|ℎ is weak immune for
player 𝑝 .

We proceed by showing equivalence 3). Let ℎ ∈ℋ \𝒯 be such
that 𝑝 = 𝑃 (ℎ) and ℎ along ℎ∗. We further fix the honest choice
after ℎ to be 𝑎∗ ∈ 𝐴(ℎ), i.e. (ℎ, 𝑎∗) is along ℎ∗. Let an honest (i.e. ℎ∗-
yielding) strategy 𝜎′ ∈ 𝒮|ℎ and an honest strategy 𝜎𝑎

∗ ∈ 𝒮| (ℎ,𝑎∗) be
connected in the following way: 𝜎′| (𝑎∗) = 𝜎𝑎

∗
. Then, one of them is

weak immune for 𝑝 iff the other is. Assume 𝜎′ is weak immune for
𝑝 . Pick an arbitrary 𝜏𝑎

∗ ∈ 𝒮| (ℎ,𝑎∗) , any extension of 𝜏𝑎
∗
to a 𝜏 ∈ 𝒮|ℎ

has the property 𝜏𝑎
∗

𝑁−𝑝 = 𝜏𝑁−𝑝 , since 𝑝 = 𝑃 (ℎ). As 𝜎′ is weak
immune for 𝑝 , we know 𝑢 |ℎ,𝑝 (𝜎′𝑝 , 𝜏𝑁−𝑝) ≥ 0. Further, by definition
of 𝜎𝑎

∗
, follows 𝐻 |ℎ (𝜎′𝑝 , 𝜏𝑁−𝑝) = (𝑎∗, 𝐻 | (ℎ,𝑎∗) (𝜎𝑎

∗
𝑝 , 𝜏𝑎

∗
𝑁−𝑝)) and thus

𝑢 | (ℎ,𝑎∗),𝑝 (𝜎𝑎
∗

𝑝 , 𝜏𝑎
∗

𝑁−𝑝) ≥ 0. Strategy 𝜏𝑎
∗ ∈ 𝒮| (ℎ,𝑎∗) was arbitrary, so

𝜎𝑎
∗
is weak immune for 𝑝 . The other direction works the same way.

For equivalence 4), let ℎ ∈ ℋ \𝒯 be such that 𝑝 = 𝑃 (ℎ) and
ℎ not along ℎ∗. For implication “⇒”, we assume 𝜎 ∈ 𝒮 is weak
immune for 𝑝 in Γ|ℎ . Let 𝑎 := 𝜎 (ℎ) ∈ 𝐴(ℎ) and 𝜎𝑎 := 𝜎 | (𝑎) ∈
𝒮| (ℎ,𝑎) . We now fix an arbitrary 𝜏𝑎 ∈ 𝒮| (ℎ,𝑎) , let 𝜏 ∈ 𝒮|ℎ be
any extension of 𝜏𝑎 , i.e. 𝜏 | (𝑎) = 𝜏𝑎 . Then, since 𝑝 = 𝑃 (ℎ), we
know 𝐻 |ℎ (𝜎𝑝 , 𝜏𝑁−𝑝) = (𝑎, 𝐻 | (ℎ,𝑎) (𝜎𝑎𝑝 , 𝜏𝑎𝑁−𝑝), which further im-
plies 𝑢 | (ℎ,𝑎),𝑝 (𝜎𝑎𝑝 , 𝜏𝑎𝑁−𝑝) = 𝑢 |ℎ,𝑝 (𝜎𝑝 , 𝜏𝑁−𝑝) ≥ 0. As 𝜏𝑎 was chosen
arbitrarily and as we are not along ℎ∗, that means 𝜎𝑎 is weak
immune for 𝑝 in Γ(ℎ,𝑎) , which proves the implication. For the
other direction “⇐”, the same reasoning applies, when we assume
𝜎𝑎 ∈ 𝒮| (ℎ,𝑎) is weak immune for 𝑝 in Γ(ℎ,𝑎) and construct 𝜎 ∈ 𝒮
such that 𝜎 (ℎ) = 𝑎, 𝜎 | (𝑎) = 𝜎𝑎 and the rest arbitrary. This concludes
the last implication and, therefore, the proof of the theorem. □

Theorem 5.10 (Compositional Collusion Resilience). Let Γ
be an EFG with honest history ℎ∗ and honest utility 𝑢∗ = 𝑢 (ℎ∗). The
following equivalences hold.

1) A leaf of Γ is collusion resilient against 𝑆 ⊂ 𝑁 iff the honest
joint utility of the deviating players 𝑝 ∈ 𝑆 is greater than or equal to
their joint utility at that leaf:

∀𝑡 ∈ 𝒯. 𝑐𝑟𝑆 (Γ|𝑡) ⇔
∑︁
𝑝∈𝑆

𝑢∗𝑝 ≥
∑︁
𝑝∈𝑆

𝑢𝑝 (𝑡) .

2) A branch of Γ, where the current player is in the deviating group
𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff all children are collusion
resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∈ 𝑆 ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∀𝑎 ∈ 𝐴(ℎ) . 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

3) A branch of Γ along the honest history ℎ∗, where the current
player is not in the deviating group 𝑆 ⊂ 𝑁 , is collusion resilient
against 𝑆 iff the child following ℎ∗ is collusion resilient against 𝑆 . Let

𝑎∗ ∈ 𝐴(ℎ) be the honest action, i.e. (ℎ, 𝑎∗) along ℎ∗, then:

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ along ℎ∗ ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ 𝑐𝑟𝑆 (Γ| (ℎ,𝑎∗))

)
.

4) A branch of Γ off the honest history ℎ∗, where the current player
is not in the deviating group 𝑆 ⊂ 𝑁 , is collusion resilient against 𝑆 iff
there exists a child that is collusion resilient against 𝑆 :

∀ℎ ∈ℋ \𝒯. 𝑃 (ℎ) ∉ 𝑆 ∧ ℎ off ℎ∗ ⇒(
𝑐𝑟𝑆 (Γ|ℎ) ⇔ ∃𝑎 ∈ 𝐴(ℎ) . 𝑐𝑟𝑆 (Γ| (ℎ,𝑎))

)
.

Proof. We show equivalence 1) first. By Definition 5.4 there has
to exist a 𝜎 ∈ 𝒮|𝑡 (yielding ℎ∗ if applicable) such that for all 𝜏 ∈ 𝒮|𝑡
the inequality

∑
𝑝∈𝑆 𝑢

∗
𝑝 ≥

∑
𝑝∈𝑆 𝑢 |𝑡,𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) holds. Since 𝑡 is a

terminal history, the utility function 𝑢 |𝑡,𝑝 = 𝑢𝑝 (𝑡) is constant and
the only existing strategy is the empty strategy. Hence, the collusion
resilience against 𝑆 of Γ|𝑡 is equivalent to

∑
𝑝∈𝑆 𝑢

∗
𝑝 ≥

∑
𝑝∈𝑆 𝑢𝑝 (𝑡).

To show claim 2), we assume ℎ ∈ ℋ \ 𝒯 is a non-terminal
history at which a player from the deviating group 𝑆 has a turn
𝑃 (ℎ) ∈ 𝑆 . We start with implication “⇒”, assuming 𝜎 ∈ 𝒮 is a
collusion resilient strategy against 𝑆 in Γ|ℎ . We pick an arbitrary
action 𝑎 ∈ 𝐴(ℎ) and define strategy 𝜎𝑎 := 𝜎 | (𝑎) ∈ 𝒮| (ℎ,𝑎) . If (ℎ, 𝑎) is
along the honest historyℎ∗, then so isℎ. Thus the collusion resilient
against 𝑆 strategy 𝜎 yields the honest history 𝐻 |ℎ (𝜎) = ℎ∗|ℎ which
implies 𝐻 | (ℎ,𝑎) (𝜎𝑎) = ℎ∗| (ℎ,𝑎) . Let 𝜏

𝑎 ∈ 𝒮| (ℎ,𝑎) be arbitrary. We
extend it to 𝜏 ∈ 𝒮|ℎ by defining 𝜏 (ℎ) = 𝑎, 𝜏 | (𝑎) = 𝜏𝑎 and letting the
rest be arbitrary. With this construction and the fact that 𝑃 (ℎ) ∈
𝑆 we get 𝐻 |ℎ (𝜎𝑁−𝑆 , 𝜏𝑆) = (𝑎, 𝐻 | (ℎ,𝑎) (𝜎𝑎𝑁−𝑆 , 𝜏

𝑎
𝑆
)). Therefore, also∑

𝑝∈𝑆 𝑢
∗
𝑝 ≥

∑
𝑝∈𝑆 𝑢 |ℎ,𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) =

∑
𝑝∈𝑆 𝑢 | (ℎ,𝑎),𝑝 (𝜎𝑎𝑁−𝑆 , 𝜏

𝑎
𝑆
), by

the collusion resilience against 𝑆 of 𝜎 . As 𝜏𝑎 was chosen arbitrarily,
and 𝜎𝑎 was constructed for an arbitrary 𝑎 the implication was
proven.

For the other direction of 2) “⇐”, we assume for all 𝑎 ∈ 𝐴(ℎ)
that 𝜎𝑎 ∈ 𝒮| (ℎ,𝑎) is collusion resilient against 𝑆 . Let 𝜎 ∈ 𝒮|ℎ be
such that for all 𝑎 ∈ 𝐴(ℎ) 𝜎 | (𝑎) := 𝜎𝑎 , and if ℎ is along ℎ∗, we
additionally require 𝜎 (ℎ) = 𝑎∗, where 𝑎∗ is the honest choice after
ℎ. In this case follows 𝐻 |ℎ (𝜎) = ℎ∗|ℎ , since 𝐻 | (ℎ,𝑎∗) (𝜎

𝑎∗) = ℎ∗| (ℎ,𝑎∗)
by assumption. We now pick an arbitrary strategy 𝜏 ∈ 𝒮|ℎ and
consider 𝑎′ := 𝜏 (ℎ) ∈ 𝐴(ℎ). As 𝑃 (ℎ) ∈ 𝑆 , for 𝜏𝑎

′
:= 𝜏 |𝑎′ , it holds

𝐻 |ℎ (𝜎𝑁−𝑆 , 𝜏𝑆) = (𝑎′, 𝐻 | (ℎ,𝑎′) (𝜎𝑎
′

𝑁−𝑆 , 𝜏
𝑎′
𝑆
)). Thus, also their utilities

are identical which implies by the assumption that 𝜎𝑎
′
is collusion

resilient against 𝑆 , that
∑
𝑝∈𝑆 𝑢

∗
𝑝 ≥

∑
𝑝∈𝑆 𝑢 | (ℎ,𝑎),𝑝 (𝜎𝑎𝑁−𝑆 , 𝜏

𝑎
𝑆
) =∑

𝑝∈𝑆 𝑢 |ℎ,𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆). Hence, 𝜎 – and therefore Γ|ℎ – is collusion
resilient against 𝑆 .

To show equivalence 3), we assume ℎ ∈ℋ \𝒯 is a non-terminal
history along the honest history ℎ∗ at which a not-deviating player
has a turn 𝑃 (ℎ) ∉ 𝑆 . We again start by proving implication “⇒” and
assume strategy 𝜎 ∈ 𝒮|ℎ yields the honest history and is collusion
resilient against 𝑆 in Γ|ℎ . We define 𝜎𝑎

∗
:= 𝜎 | (𝑎∗) ∈ 𝒮| (ℎ,𝑎∗) , which

by construction also yields the honest history. For an arbitrary 𝜏𝑎
∗ ∈

𝒮| (ℎ,𝑎∗) , let 𝜏 ∈ 𝒮|ℎ be an extension, i.e. 𝜏 | (𝑎∗) := 𝜏𝑎
∗
, rest arbitrary.

Then, due to 𝑃 (ℎ) ∉ 𝑆 and 𝜎 (ℎ) = 𝑎∗, follows 𝐻 |ℎ (𝜎𝑁−𝑆 , 𝜏𝑆) =
(𝑎∗, 𝐻 | (ℎ,𝑎∗) (𝜎𝑎

∗
𝑁−𝑆 , 𝜏

𝑎∗
𝑆
)). As before, this implies that the collusion

resilience against 𝑆 of 𝜎∗ and, therefore, the collusion resilience
against 𝑆 of Γ| (ℎ,𝑎∗) . For the other direction “⇐”, we assume 𝜎𝑎

∗ ∈

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

𝒮| (ℎ,𝑎∗) is honest and collusion resilient against 𝑆 . We construct
𝜎 ∈ 𝒮|ℎ such that 𝜎 | (𝑎∗) := 𝜎𝑎

∗
, 𝜎 (ℎ) = 𝑎∗ and the rest arbitrary,

with similar reasoning as before we conclude that 𝜎 yields the
honest history and is collusion resilient against 𝑆 .

For the last equivalence 4), let ℎ ∈ ℋ \𝒯 be a non-terminal
history not along the honest history ℎ∗ at which a not-deviating
player has a turn 𝑃 (ℎ) ∉ 𝑆 . The first implication “⇒” can be shown
by assuming 𝜎 ∈ 𝒮 is collusion resilient against 𝑆 and by choos-
ing 𝜎𝑎 := 𝜎 | (𝑎) ∈ 𝒮| (ℎ,𝑎) , where 𝑎 := 𝜎 (ℎ). Fixing now an arbi-
trary 𝜏𝑎 ∈ 𝒮| (ℎ,𝑎) , and an extension 𝜏 ∈ 𝒮 of it, since 𝜎 (ℎ) = 𝑎

and 𝑃 (ℎ) ∉ 𝑆 , follows 𝐻 |ℎ (𝜎𝑁−𝑆 , 𝜏𝑆) = (𝑎, 𝐻 | (ℎ,𝑎) (𝜎𝑎𝑁−𝑆 , 𝜏
𝑎
𝑆
)).

As shown before this implies 𝜎𝑎 is collusion resilient against 𝑆
in Γ| (ℎ,𝑎) . The other implication “⇐” is similar to prove. Assume
𝑎 ∈ 𝐴(ℎ) is such that 𝜎𝑎 ∈ 𝒮| (ℎ,𝑎) is collusion resilient against 𝑆
in Γ| (ℎ,𝑎) . We construct a strategy 𝜎 ∈ 𝒮|ℎ , by setting 𝜎 (ℎ) = 𝑎

and 𝜎 | (𝑎) := 𝜎𝑎 , the rest can be arbitrary. Let now be 𝜏 ∈ 𝒮|ℎ ar-
bitrary. With 𝜏𝑎 := 𝜏 | (𝑎) ∈ 𝒮| (ℎ,𝑎) , we arrive at 𝐻 |ℎ (𝜎𝑁−𝑆 , 𝜏𝑆) =
(𝑎, 𝐻 | (ℎ,𝑎) (𝜎𝑎𝑁−𝑆 , 𝜏

𝑎
𝑆
)). This again implies that 𝜎 is collusion re-

silient against 𝑆 in Γ|ℎ , which concludes the proof of equivalence 4)
and hence the theorem. □

We need a lemma to show Theorem 5.12.

Lemma A.6. A strategy 𝜎 ∈ 𝒮|ℎ is practical in subtree Γ|ℎ iff
strategy 𝜎 |𝑔 ∈ 𝒮| (ℎ,𝑔) is practical in subtree Γ| (ℎ,𝑔) , for all 𝑔 ∈ℋ|ℎ .

Proof. By Definition 3.6, a strategy 𝜎 ∈ 𝒮|ℎ is practical if for all
𝑔′ ∈ℋ|ℎ and all 𝜏 ∈ 𝒮| (ℎ,𝑔′) the utility inequality holds. Whereas,
𝜎 |𝑔 ∈ 𝒮| (ℎ,𝑔) is practical for all 𝑔 ∈ℋ|ℎ , if for all 𝑘 ∈ℋ| (ℎ,𝑔) and for
all 𝜏 ∈ 𝒮| (ℎ,𝑔,𝑘) the utility inequality holds. Hence, by substituting
𝑔′ = (𝑔, 𝑘) in the above-sketched formulae, it is easy to see that
they are equivalent. □

Theorem 5.12 (Compositional Practicality). Let Γ be an EFG
with honest history ℎ∗ and U(ℎ) be the set of practical utilities of
subtree Γ|ℎ . Let𝑢∗ be the honest utility𝑢∗ = 𝑢 (ℎ∗). Then the following
identities and equivalences hold.

1) In a leaf of Γ the only practical utility is that of the leaf.

∀𝑡 ∈ 𝒯. U(𝑡) = {𝑢 (𝑡)} .
2) The honest utility 𝑢∗ is practical in a branch of Γ along ℎ∗ iff

it is practical in the child following ℎ∗ and if for every other child at
least one practical utility is not greater than 𝑢∗ for the current player.
Let 𝑎∗ ∈ 𝐴(ℎ) be the honest action after ℎ, then:

∀ℎ ∈ℋ \𝒯. ℎ along ℎ∗ ⇒
(
𝑝𝑟 (Γ|ℎ) ⇔

𝑝𝑟 (Γ| (ℎ,𝑎∗)) ∧ ∀𝑎 ∈ 𝐴(ℎ) \ {𝑎∗} ∃𝑢 ∈ U((ℎ, 𝑎)) . 𝑢∗𝑃 (ℎ) ≥ 𝑢𝑃 (ℎ)
)
.

3) A utility is practical in a branch of Γ off the honest history ℎ∗

iff it is practical in a child and if, for every other child, at least one
practical utility is not greater for the current player.

∀ℎ ∈ℋ \𝒯. ℎ off ℎ∗ ⇒
(
∀𝑡 ∈ 𝒯|ℎ . 𝑢 (𝑡) ∈ U(ℎ) ⇔

∃𝑎 ∈ 𝐴(ℎ) . 𝑢 (𝑡) ∈ U((ℎ, 𝑎)) ∧
∀𝑎′ ∈ 𝐴(ℎ) \ {𝑎} ∃𝑢′ ∈ U((ℎ, 𝑎′)). 𝑢𝑃 (ℎ) (𝑡) ≥ 𝑢′

𝑃 (ℎ)
)
.

Proof. We show claim 1) first. By Definition 5.5, we know that
the utility in the leaf after terminal history 𝑡 is practical in subtree
Γ|ℎ , if there is 𝜎 ∈ 𝒮|ℎ , extending history 𝑡 and ∀𝑔 ∈ ℋ|ℎ ∀𝜏 ∈
𝒮| (ℎ,𝑔) . 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔) ≥ 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔,𝑁−𝑃 (ℎ,𝑔) , 𝜏𝑃 (ℎ,𝑔)). In

our case, we haveℎ = 𝑡 ; hence the only strategy𝜎 ∈ 𝒮|𝑡 is the empty
one. Further, the only history 𝑔 ∈ℋ|𝑡 is the empty history (hence
(ℎ,𝑔) = 𝑡), and thus also the only strategy 𝜏 ∈ 𝒮|𝑡 is the empty
strategy. This leaves us with 𝑢 (𝑡) being practical iff 𝑢 |𝑡,𝑃 (𝑡) (𝜎) ≥
𝑢 |𝑡,𝑃 (𝑡) (𝜏), which is equivalent to 𝑢𝑃 (𝑡) (𝑡) = 𝑢𝑃 (𝑡) (𝑡). Therefore,
𝑢 (𝑡) ∈ U(𝑡), and since there are no other utilities is Γ|𝑡 , follows
U(𝑡) = {𝑢 (𝑡)}.

To show equivalence 2), we fix a history ℎ ∈ ℋ \𝒯, which is
along the honest history, and let 𝑎∗ be the honest action after ℎ.
For implication “⇒” we assume strategy 𝜎 ∈ 𝒮|ℎ is practical in Γ|ℎ
and yields the honest history. Theorem 5.1 implies that also Γ| (ℎ,𝑎∗)
is practical. To show the other conjunct of the right-hand side, let
𝑎 ∈ 𝐴(ℎ) \ {𝑎∗} be arbitrary. We apply Lemma A.6, to get that 𝜎 | (𝑎)
is practical in Γ| (ℎ,𝑎) . Hence, 𝑢 := 𝑢 | (ℎ,𝑎) (𝜎 | (𝑎)) ∈ U(ℎ, 𝑎). Since 𝜎
is practical in Γ|ℎ , for 𝑔 = ∅ ∈ℋ|ℎ and 𝜏 ∈ 𝒮|ℎ such that 𝜏 (ℎ) = 𝑎

and 𝜏 | (𝑎) = 𝜎 | (𝑎) follows

𝑢∗ = 𝑢 |ℎ,𝑃 (ℎ) (𝜎) ≥ 𝑢 |ℎ,𝑃 (ℎ) (𝜏𝑃 (ℎ) , 𝜎𝑁−𝑃 (ℎ)) = 𝑢 | (ℎ,𝑎) (𝜎 | (𝑎)) .

The last utility is exactly the considered 𝑢 ∈ U(ℎ, 𝑎), which con-
cludes the proof of the implication.

To show the other direction “⇐”, we assume the right-hand
side holds. I.e. there exists an honest strategy 𝜎𝑎

∗ ∈ 𝒮| (ℎ,𝑎∗) that
is practical in Γ| (ℎ,𝑎∗) as well as strategies 𝜎𝑎 ∈ 𝒮| (ℎ,𝑎) for 𝑎 ≠

𝑎∗, that are practical in Γ| (ℎ,𝑎) and whose utilities 𝑢𝑎 ∈ U(ℎ, 𝑎)
satisfy 𝑢∗

𝑃 (ℎ) ≥ 𝑢𝑎
𝑃 (ℎ) . We now construct a strategy 𝜎 ∈ 𝒮|ℎ in the

following way: Let 𝜎 (ℎ) = 𝑎∗ and for all 𝑎 ∈ 𝐴(ℎ) (including 𝑎∗)
let 𝜎 | (𝑎) = 𝜎𝑎 . First, we note that 𝜎 yields the honest history by
construction. Second, we prove it is practical in Γ|ℎ by picking an
arbitrary history 𝑔 ∈ℋ|ℎ and an arbitrary strategy 𝜏 ∈ 𝒮| (ℎ,𝑔) and
showing 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔) ≥ 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜏𝑃 (ℎ,𝑔) , 𝜎 |𝑔,𝑁−𝑃 (ℎ,𝑔)):

Case 1: 𝑔 = ∅. Then 𝑢 | (ℎ),𝑃 (ℎ) (𝜎) = 𝑢∗
𝑃 (ℎ) , as 𝜎 yields the

honest history and ℎ along ℎ∗. Also, 𝑢 | (ℎ),𝑃 (ℎ) (𝜏𝑃 (ℎ) , 𝜎𝑁−𝑃 (ℎ)) =
𝑢 | (ℎ,𝑎),𝑃 (ℎ) (𝜏 | (𝑎),𝑃 (ℎ) , 𝜎 | (𝑎),𝑁−𝑃 (ℎ)), where 𝑎 = 𝜏 (ℎ). Using The-
orem 5.6 and the fact that 𝜎 | (𝑎) is practical in Γ| (ℎ,𝑎) , follows
𝑢 | (ℎ,𝑎),𝑃 (ℎ) (𝜏 | (𝑎),𝑃 (ℎ) , 𝜎 | (𝑎),𝑁−𝑃 (ℎ)) ≤ 𝑢 | (ℎ,𝑎),𝑃 (ℎ) (𝜎 | (𝑎)) = 𝑢𝑎

𝑃 (ℎ) .
Applying our assumption 𝑢∗

𝑃 (ℎ) ≥ 𝑢𝑎
𝑃 (ℎ) , the required inequality

holds. Case 2: 𝑔 = (𝑎,𝑔′), where 𝑎 ∈ 𝐴(ℎ), 𝑔′ ∈ ℋ| (ℎ,𝑎) . Then,
𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎 |𝑔) = 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜎𝑎|𝑔′) which is – due to the prac-
ticality of 𝜎𝑎 – greater than or equal to

𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜏𝑃 (ℎ,𝑔) , 𝜎𝑎|𝑔′,𝑁−𝑃 (ℎ,𝑔))
= 𝑢 | (ℎ,𝑎,𝑔′),𝑃 (ℎ,𝑎,𝑔′) (𝜏𝑃 (ℎ,𝑎,𝑔′) , 𝜎𝑎|𝑔′,𝑁−𝑃 (ℎ,𝑎,𝑔′))
= 𝑢 | (ℎ,𝑔),𝑃 (ℎ,𝑔) (𝜏𝑃 (ℎ,𝑔) , 𝜎 |𝑔,𝑁−𝑃 (ℎ,𝑔)).

Hence, the second direction of the second claim is proven.
For equivalence 3), let ℎ ∈ ℋ \𝒯 be off the honest history ℎ∗

and 𝑡 ∈ 𝒯|ℎ . We prove implication “⇒” first and assume 𝑢 |ℎ (𝑡) ∈
U(ℎ) is a practical utility in Γ|ℎ . Thus, there exists a strategy 𝜎 ∈
𝒮|ℎ such that 𝐻 (𝜎) = 𝑡 and 𝜎 is practical. History 𝑡 is terminal,
while ℎ is not. Therefore, 𝑡 is not empty. Hence, we can split it
into 𝑡 := (𝑎𝑡 , 𝑡 ′), where 𝑎𝑡 is the first action along 𝑡 . Applying
Lemma A.6, we know that also 𝜎 (𝑎𝑡) ∈ 𝒮| (ℎ,𝑎𝑡) is practical. Since
𝐻 (𝜎) = 𝑡 , follows 𝜎 (𝑡 ′) = 𝑎𝑡 , and thus 𝑢 (𝑡) = 𝑢 | (ℎ,𝑎𝑡) (𝜎 | (𝑎𝑡)) ∈
U(ℎ, 𝑎𝑡) which proves the first conjunct of the implication. For
the second, pick an arbitrary 𝑎 ∈ 𝐴(ℎ) \ {𝑎𝑡 } and consider the
strategy 𝜎 ∈ 𝒮|ℎ from before. Using Lemma A.6 again, it follows

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

that also 𝜎 | (𝑎) ∈ 𝒮| (ℎ,𝑎) is practical and by definition ofUwe know
𝑢 | (ℎ,𝑎) (𝜎 | (𝑎)) ∈ U(ℎ, 𝑎). Towards using the practicality of 𝜎 in Γ|ℎ ,
let 𝜏 ∈ 𝒮|ℎ be such that 𝜏 (ℎ) = 𝑎 and 𝜏 | (𝑎) = 𝜎 | (𝑎) . Finally, we
conclude 𝑢 |ℎ,𝑃 (ℎ) (𝑡) = 𝑢 |ℎ,𝑃 (ℎ) (𝜎) ≥ 𝑢 |ℎ,𝑃 (ℎ) (𝜏𝑃 (ℎ) , 𝜎𝑁−𝑃 (ℎ)) =
𝑢 | (ℎ,𝑎),𝑃 (ℎ) (𝜎 | (𝑎)). Hence also, the second conjunct holds, and the
implication is proven.

The other direction, “⇐” of equivalence 3), can be shown simi-
larly to “⇐” of equivalence 2). We assume 𝑢 |ℎ (𝑡) ∈ U(ℎ, 𝑎′) and for
all other actions𝑎 ∈ 𝐴(ℎ)\{𝑎′} exists a practical utility𝑢𝑎 ∈ U(ℎ, 𝑎)
such that 𝑢 |ℎ,𝑃 (ℎ) (𝑡) ≥ 𝑢𝑎

𝑃 (ℎ) . Then, we construct a strategy 𝜎 ∈
𝒮|ℎ in the following way. Let 𝜎 (ℎ) = 𝑎′. For all 𝑎 ∈ 𝐴(ℎ) \ {𝑎′}, let
𝜎 | (𝑎) = 𝜎𝑎 , where 𝜎𝑎 is a practical strategy in Γ| (ℎ,𝑎) with practical
utility 𝑢𝑎 = 𝑢 | (ℎ,𝑎) (𝜎𝑎) ∈ U(ℎ, 𝑎). For 𝑎′, let 𝜎 (𝑎′) be the practical
strategy in Γ| (ℎ,𝑎′) that yields utility 𝑢 |ℎ (𝑡). It follows that strategy
𝜎 also yields utility 𝑢 |ℎ (𝑡). With this construction, we can proceed
as in equivalence 2), direction “⇐”, to prove the practicality of 𝜎
which implies the practicality of 𝑢 |ℎ (𝑡) in Γ|ℎ to conclude the proof
of the theorem. □

B Algorithms

Algorithm 3: Relay Function ComputeSP.
input : input instance Π, honest history ℎ∗, security

property 𝑠𝑝 ∈ {𝑤𝑖,𝑤𝑒𝑟𝑖, 𝑐𝑟, 𝑝𝑟 }, set S containing
initial constraints and currently analyzed case,
player group pg.

output : (result, split), where result states whether Π
satisfies sp for pg, given S, and split a crucial
utility comparison we cannot decide.

1 if sp = wi then
2 return ComputeWI(Γ, ℎ∗, S, pg)
3 else if sp = weri then
4 return ComputeWERI(Γ, ℎ∗, S, pg)
5 else if sp = cr then
6 return ComputeCR(Γ, ℎ∗, S, pg)
7 else

8 (result, split) ← ComputePR(Γ, ℎ∗, S)
9 if result = ∅ then
10 return (false, split)
11 else

12 return (true, split)
13 end

14 end

Function ComputeWERI. The function for weaker immunity is iden-
tical to ComputeWI in Algorithm 2, except that GetUtility returns
only the real part of the requested utility.
Function ComputeCR. The function in Algorithm 4 is similar to
ComputeWI in Algorithm 2. It differs in the considered utility com-
parison 𝑢𝑡1 [®𝑥] ≥ 𝑢𝑡2 [®𝑥]. While 𝑢𝑡1 was player pg’s utility and
𝑢𝑡2 = 0, for collusion resilience, 𝑢𝑡1 is the sum of the honest utili-
ties of the deviating players pg and 𝑢𝑡2 is the sum of the utilities
of the deviating players 𝑝 ∈ pg in the current leaf. Hence pg is
a group of players rather than a single player. Other than that,

Algorithm 4: Function ComputeCR for Collusion Re-
silience.

input :a game tree Γ, an honest history ℎ∗, the set S
containing the initial constraints and the current
case, and the player group pg.

output : (result, split), where result is true iff Γ is
collusion resilient against pg, given S, and split a
crucial utility comparison we cannot decide.

1 if isLeaf(Γ) then
2 if Check(S, GetUtility(ℎ∗, pg) <

GetUtility(Γ, pg)) = unsat then
3 return (true, null)
4 end

5 if Check(S, GetUtility(ℎ∗, pg) ≥
GetUtility(Γ, pg)) = unsat then

6 return (false, null)
7 end

8 return

(false, GetUtility(ℎ∗, pg) ≥ GetUtility(Γ, pg)))
9 end

10 if CurrentPlayer(Γ) ∈ pg then
11 for 𝑎 ∈ Actions(Γ) do
12 (result, split) ← ComputeCR(Γ| (𝑎) , ℎ∗, S, pg)
13 if result = false then

14 return (result, split)
15 end

16 end

17 return (true, null)
18 end

19 if AlongHonest(Γ, ℎ∗) then
20 𝑎∗ ← HonestAction(Γ, ℎ∗)
21 return ComputeCR(Γ| (𝑎∗) , ℎ∗, S, pg)
22 end

23 newsplit← null
24 for 𝑎 ∈ Actions(Γ) do
25 (result, split) ← ComputeCR(Γ| (𝑎) , ℎ∗, S, pg)
26 if result = true then
27 return (true, null)
28 else if split ≠ null then
29 newsplit← split
30 end

31 end

32 return (false, newsplit)

in the branch-case (lines 10–32) the roles of whether the current
player CurrentPlayer(Γ) is in pg or not, are reversed, as it is in
Theorem 5.10.
Function ComputePR. The function ComputePR to compute the
practicality of game tree Γ for honest history ℎ∗, and in the case
specified in set S operates a little differently than the ones for the
other properties. As described in Theorem 5.12, we have to keep

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

Algorithm 5: Function ComputePR for Practicality.
input :a game tree Γ, honest history ℎ∗, set S containing

the initial constraints and the current case.
output : (UΓ, split), where UΓ are all practical (and

honest if along ℎ∗) utilities in Γ, and split a
crucial utility comparison that cannot be decided.

1 if isLeaf(Γ) then
2 return ([GetUtility(Γ)], null)
3 end

4 subtrees← [ComputePR(Γ| (𝑎) , ℎ∗, S) for 𝑎 ∈
Actions(Γ)]

5 𝑝 ← CurrentPlayer(Γ)
6 UΓ ← ∅
7 if AnyUtilityEmpty(subtrees) then
8 return subtrees.ReturnEmpty()
9 end

10 if AlongHonest(Γ, ℎ∗) then
11 ([𝑢∗], split∗) ← GetHonestResult(subtrees)
12 for (U𝑎, _) ∈ subtrees \ {([𝑢∗], split∗)} do
13 (result, split) ← ExistsDominated(U𝑎, 𝑢∗, S, 𝑝)
14 if ¬result then
15 return (∅, split)
16 end

17 end

18 return ([𝑢∗], null)
19 end

20 for (U𝑎, split𝑎) ∈ subtrees do
21 for 𝑢 ∈ U𝑎

do

22 toAdd← true

23 for (U𝑠 , _) ∈ subtrees \ (U𝑎, split𝑎) do
24 (result, split) ←

ExistsDominated(U𝑠 , 𝑢, S, 𝑝)
25 if ¬result ∧ split ≠ null then
26 return (∅, split)
27 else if ¬result ∧ split = null then
28 toAdd← false

29 end

30 end

31 if toAdd then

32 UΓ .Add(𝑢)
33 end

34 end

35 return (UΓ, null)

track of all practical utilities of subtrees, in order to decide the
practicality of ℎ∗.

Hence, for a leaf trivially the only practical utility is its utility
(lines 1–3). For branches, we first check if any results of the subtrees
yields an empty list of practical utilities in lines 4–9. If yes, then
either we need a case split (if split ≠ null) or the honest history
was not practical in a subtree which implies that it is not practical

in the entire tree (Theorem 5.1), otherwise. In any case returning
the respective ComputePR result does precisely that.

If none of the subtrees led to an empty set of practical utilities,
we distinguish between whether the current subtree Γ is along the
honest history ℎ∗ (AlongHonest(Γ, ℎ∗)). If so, in lines 10–19 it is
analyzed whether the honest utility 𝑢∗ dominates at least one prac-
tical utility for each sibling, thereby proceeding as in Theorem 5.12.
In case we found a dominated utility per sibling, the honest utility
is returned (line 18), otherwise the empty list of utilities, together
with a crucial case split (if it exists) is returned (line 15).

The function ExistsDominated, as defined in Algorithm 6, com-
putes whether one of the utilities in U has to be less than or equal
to 𝑢 for the current player 𝑝 for all values of ®𝑥 that satisfy the
preconditions in S. If the relation of two terms cannot be decided,
we store it in split.

For the case where Γ is not along ℎ∗ (lines 20–35), the list of all
practical utilities has to be computed. Similarly, as before, a utility
that was practical in a subtree is practical now if it dominates at
least one practical utility of each sibling. To decide domination,
again function ExistsDominated is employed. If a further case
distinction is needed, the empty list together with that split is
returned (line 26); otherwise, the list of practical utilities together
with the null-split (line 35).

Algorithm 6: Function ExistsDominated.
input :a list of utility tuples U, a single utility tuple 𝑢,

set S containing the initial constraints and the
current case, a player 𝑝 .

output : (result, split), where result is true if there exists
a utility 𝑢′ ∈ U such that 𝑢𝑝 ≥ 𝑢′𝑝 for all values
that satisfy S; false otherwise; and split a
crucial utility comparison that cannot be decided.

1 existsDominated← false

2 split← null
3 for 𝑢′ ∈ U do

4 if Check(S, 𝑢 [𝑝] < 𝑢′ [𝑝]) = unsat then
5 existsDominated← true

6 else if Check(S, 𝑢 [𝑝] ≥ 𝑢′ [𝑝]) = sat then
7 split← 𝑢 [𝑝] ≥ 𝑢′ [𝑝]
8 end

9 end

10 return (existsDominated, split)

C Soundness and Completeness Proofs

To prove Theorem 6.4, we need some preliminary results first. We
start with a result about the practicality of subtrees which are off
the honest history.

Lemma C.1 (Subtrees off Honest History are Practical).
Every subtree Γ|ℎ of a game Γ that is off the honest history is practical.

Proof. We fix an arbitrary subtree Γ|ℎ not along the honest
history for which we prove practicality. We construct a strategy
𝜎 ∈ 𝒮|ℎ in the following inductive way bottom-up: We consider
histories 𝑘 in Γ|ℎ , such that for all possible actions 𝑎 ∈ 𝐴 |ℎ (𝑘)

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

after 𝑘 the strategy 𝜎 has been defined already for the subtree after
(𝑘, 𝑎). Initially, this is only the case for histories 𝑘 , where all actions
𝑎 ∈ 𝐴 |ℎ (𝑘) lead to leaves.

At each such history 𝑘 we compare the utilities for the current
player 𝑃 (𝑘) after the possible choices 𝑎 ∈ 𝐴 |ℎ (𝑘) according to
𝜎 : 𝑢 | (ℎ,𝑘,𝑎),𝑃 (𝑘) (𝜎 | (𝑘,𝑎)). We define strategy 𝜎 to pick an action
𝑎′ = 𝜎 (𝑘) ∈ 𝐴 |ℎ (𝑘) which maximizes 𝑃 (𝑘)’s utility. If this is done
iteratively, one eventually reaches the root of Γ|ℎ , at which point
the strategy 𝜎 ∈ 𝒮|ℎ is fully defined.

We now show 𝜎 is practical for the fixed case split. According to
Definition 3.6, we pick an arbitrary history 𝑔 ∈ℋ|ℎ , a player 𝑝 ∈ 𝑁
and a strategy 𝜏 ∈ 𝒮| (ℎ,𝑔) in the subgame after 𝑔, and prove:

𝑢 | (ℎ,𝑔),𝑝 (𝜎 |𝑔) ≥ 𝑢 | (ℎ,𝑔),𝑝 (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) . (7)

If 𝜏𝑝 and 𝜎 |𝑔,𝑝 are identical, the inequality holds trivially, hence we
assume them to be distinct. The strategy 𝜎 |𝑔 generates a history
which we call ℎ𝜎 = 𝐻 (𝜎 |𝑔) and 𝐻 (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) = ℎ𝜏 . Note that
the strategies differ only in choices player 𝑝 made. We will now
use induction on the deviation points ℓ𝑛 of 𝜎 along ℎ𝜏 to show
Equation (7). Our induction hypothesis is

𝑢 | (ℎ,𝑔,ℓ𝑛),𝑝 (𝜎 | (𝑔,ℓ𝑛)) ≥ 𝑢 | (ℎ,𝑔,ℓ𝑛),𝑝 (𝜏 |ℓ𝑛,𝑝 , 𝜎 | (𝑔,ℓ𝑛),𝑁−𝑝) . (8)

For the base case, we consider the last point along the generated
history ℎ𝜏 , where the choice taken in strategy (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) differs
from the one taken in 𝜎 |𝑔 . We call the history leading to this point
ℓ1 ∈ℋ| (ℎ,𝑔) . The player at ℓ1 has to be 𝑝 . Revisiting now the con-
struction of 𝜎 , at ℓ1 we chose 𝜎 |𝑔 (ℓ1) =: 𝑎1 to maximize the utility
of 𝑃 (ℓ1) = 𝑝 . Therefore, we know for 𝑐1 := 𝜏 (ℓ1)

𝑢 | (ℎ,𝑔,ℓ1,𝑎1),𝑝 (𝜎 | (𝑔,ℓ1,𝑎1)) ≥ 𝑢 | (ℎ,𝑔,ℓ1,𝑐1),𝑝 (𝜎 | (𝑔,ℓ1,𝑐1))
= 𝑢 | (ℎ,𝑔,ℓ1,𝑐1),𝑝 (𝜏 | (ℓ1,𝑐1),𝑝 , 𝜎 | (𝑔,ℓ1,𝑐1),𝑁−𝑝) .

The equality holds, because 𝜎 and (𝜏𝑝 , 𝜎𝑁−𝑝) are identical on
Γ| (ℎ,𝑔,ℓ1,𝑐1) . By definition of 𝑎1 and 𝑐1 we also know

𝑢 | (ℎ,𝑔,ℓ1),𝑝 (𝜎 | (𝑔,ℓ1)) ≥ 𝑢 | (ℎ,𝑔,ℓ1),𝑝 (𝜏 |ℓ1,𝑝 , 𝜎 | (𝑔,ℓ1),𝑁−𝑝) , (9)

which concludes the base case.
For the inductive case, we assume the induction hypothesis Equa-

tion (8), for the previous deviation point ℓ𝑛−1 and consider deviation
point ℓ𝑛 along ℎ𝜏 . We define 𝑐𝑛 := 𝜏 (ℓ𝑛) an 𝑎𝑛 := 𝜎 |𝑔 (ℓ𝑛). By the
definition of 𝜎 , we have

𝑢 | (ℎ,𝑔,ℓ𝑛,𝑎𝑛),𝑝 (𝜎 | (𝑔,ℓ𝑛,𝑎𝑛)) ≥ 𝑢 | (ℎ,𝑔,ℓ𝑛,𝑐𝑛),𝑝 (𝜎 | (𝑔,ℓ𝑛,𝑐𝑛)) . (10)

We further know that

𝑢 | (ℎ,𝑔,ℓ𝑛,𝑐𝑛),𝑝 (𝜎 | (𝑔,ℓ𝑛,𝑐𝑛)) = 𝑢 | (ℎ,𝑔,ℓ𝑛−1),𝑝 (𝜎 | (𝑔,ℓ𝑛−1)) . (11)

This is the case, since by definition of ℓ𝑛 and ℓ𝑛−1 as subsequent
deviation points, the history of 𝜎 |𝑔 between (ℓ𝑛, 𝑐𝑛) and ℓ𝑛−1 is
identical to the one of (𝜏𝑝 , 𝜎) |𝑔,𝑁−𝑝 . Combining now Equation (10),
Equation (11) and the inductive hypothesis we derive

𝑢 | (ℎ,𝑔,ℓ𝑛,𝑎𝑛),𝑝 (𝜎 | (𝑔,ℓ𝑛,𝑎𝑛)) ≥ 𝑢 | (ℎ,𝑔,ℓ𝑛−1),𝑝 (𝜏 |𝑙𝑛−1,𝑝 , 𝜎 | (𝑔,ℓ𝑛−1),𝑁−𝑝) .
(12)

By the definition of 𝑎𝑛 (for the left-hand side of the equation) and
the fact that ℓ𝑛 and ℓ𝑛−1 are along ℎ𝜏 (for the right-hand side), we
conclude that Equation (8) holds also for ℓ𝑛 .

To finalize the proof, we consider the first point ℓ𝑀 along ℎ𝜏 ,
where 𝜎𝑔 and (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) differ. This is exactly the splitting point
of ℎ𝜎 and ℎ𝜏 , thus

𝑢 | (ℎ,𝑔),𝑝 (𝜎 |𝑔) = 𝑢 | (ℎ,𝑔,ℓ𝑀),𝑝 (𝜎 | (𝑔,ℓ𝑀)) , and (13)
𝑢 | (ℎ,𝑔),𝑝 (𝜏𝑝 , 𝜎 |𝑔,𝑁−𝑝) = 𝑢 | (ℎ,𝑔,ℓ𝑀),𝑝 (𝜏 |𝑙𝑀 ,𝑝 , 𝜎 | (𝑔,ℓ𝑀),𝑁−𝑝) . (14)

From this, together with Equation (8), Equation (7) follows, which
shows that 𝜎 is indeed practical. Hence, we proved that any subtree
not along the honest history is practical. □

Next, two lemmas about the ComputePR function are stated.

Lemma C.2. Let Γ be a subtree of a game Γ′, ℎ∗ an honest his-
tory of the Γ′, S be a set of initial constraints 𝐶 and case case, and
ComputePR(Γ, ℎ∗, S) = (UΓ, split). If a utility 𝑢 is an element of UΓ ,
then for all values ®𝑥 satisfying 𝐶 ∪ case 𝑢 [®𝑥] is practical in Γ, and –
if Γ is along ℎ∗ – 𝑢 = 𝑢 (ℎ∗).

Proof. We prove this claim using structural induction. For the
base case, we assume Γ is a leaf. Then according to Algorithm 5,
lines 1–3, the utility of the leaf will be returned. It is by definition
also the only practical utility of the leaf (for all values of ®𝑥). If the
leaf is along the honest history, it is further the honest utility, hence
the base case is shown.

Let us now assume Γ is a branch and that we have shown the
property for all subtrees of Γ. We first consider the case where Γ
is along ℎ∗. Then, by induction hypothesis and assuming 𝑎∗ is the
honest action, if UΓ| (𝑎∗) contains an element 𝑢𝑎∗ it has to be the
honest utility 𝑢𝑎∗ = 𝑢 (ℎ∗) and it has to be practical for all values of
®𝑥 that satisfy𝐶∪case. Hence,𝑢∗ = 𝑢 (ℎ∗) in line 11. Following lines
12–17 of the algorithm and Algorithm 6, 𝑢 (ℎ∗) is returned iff for
all siblings Γ𝑎 of Γ(𝑎∗) exists a (by induction hypothesis practical)
utility 𝑢𝑎 such that the (by construction satisfiable) constraints
in S together with the constraint 𝑢𝑝 (ℎ∗) < 𝑢𝑎,𝑝 is unsatisfiable,
where 𝑝 is the current player at Γ. This equivalent to all ®𝑥 that
satisfy 𝐶 ∪ case also satisfy 𝑢𝑝 (ℎ∗) [®𝑥] ≥ 𝑢𝑎,𝑝 [®𝑥]. Applying now
Theorem 5.12, it follows that 𝑢 (ℎ∗) [𝑥] is practical in Γ for all ®𝑥 that
satisfy𝐶 ∪case in this exact case. Hence, if 𝑢 ∈ UΓ , then 𝑢 = 𝑢 (ℎ∗)
and it is practical for all ®𝑥 that satisfy 𝐶 ∪ case.

Secondly, assume Γ is not along the honest history. Again, by
induction hypothesis all utilities occurring in line 4 subtrees, are
practical in their subgames for all ®𝑥 satisfying 𝐶 ∪ case. A utility
𝑢𝑎 ∈ UΓ| (𝑎) is now added to the returned set UΓ , exactly if for all
siblings Γ|𝑏 there exists a (by induction hypothesis practical in Γ|𝑏
for the ®𝑥 satisfying the constraints) utility 𝑢𝑏 such that 𝐶 ∪ case ∪
𝑢𝑎,𝑝 < 𝑢𝑏,𝑝 is unsat. Which is again according to Theorem 5.12
equivalent to 𝑢𝑎 being practical in Γ for all ®𝑥 satisfying 𝐶 ∪ case.
This concludes the induction step and hence the proof of the lemma.

□

Lemma C.3. Let Γ be a subtree of a game Γ′, ℎ∗ an honest his-
tory of Γ′, S a set of initial constraints 𝐶 and a case case, and
ComputePR(Γ, ℎ∗, S) = (UΓ, null). If a utility 𝑢 from Γ is not an
element of UΓ , then for all values ®𝑥 satisfying 𝐶 ∪ case the utility
𝑢 [®𝑥] is not practical in Γ, or – if Γ is along ℎ∗ – 𝑢 ≠ 𝑢 (ℎ∗).

Proof. We prove the lemma by structural induction. For the
base case we assume Γ is a leaf. If a utility is not in UΓ , that means

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

that it is not the leaf utility which is equivalent to not being practical
in Γ.

For the inductive case, we assume Γ is a branch. First, we further
assume that Γ is along ℎ∗. By induction hypothesis, Lemma C.2 and
by Algorithm 5, the only candidate for being in UΓ is 𝑢 (ℎ∗), if it
was in UΓ| (𝑎∗) . All others are by the algorithm not in UΓ𝑎∗ and by
induction hypothesis therefore either not 𝑢 (ℎ∗) or are 𝑢 (ℎ∗) but
not practical in Γ| (𝑎∗) . In any case, all of those are also in Γ not
𝑢 (ℎ∗) or are𝑢 (ℎ∗) but not practical in Γ, according to Theorem 5.12.
Therefore, assume 𝑢 (ℎ∗) ∈ UΓ| (𝑎∗) , but is not in U |Γ . Following the
algorithm, this implies that there is a child Γ| (𝑎) , for which all practi-
cal utilities 𝑢 ∈ UΓ| (𝑎) (by induction hypothesis and Lemma C.2) the
constraints in S imply 𝑢𝑝 (ℎ∗) < 𝑢𝑝 , where 𝑝 is the current player.
This has to be the case because otherwise either the returned split
would not have been null or 𝑢 (ℎ∗) ∈ UΓ . It, however, implies that
𝑢 (ℎ∗) is not practical for all ®𝑥 satisfying the constraints in S.

Finally, we assume Γ is not along the honest history. We know
that only utilities that occurred in a UΓ| (𝑎) are candidates to be
in UΓ , the others not. The others are, according to the induction
hypothesis, not practical inUΓ| (𝑎) for all ®𝑥 satisfying the constraints
in S. Therefore they are also not practical in UΓ for all ®𝑥 satisfying
the constraints in S. The ones that are in a UΓ| (𝑎) are practical for
all such ®𝑥 by Lemma C.2. Hence, if a utility 𝑢 ∈ UΓ| (𝑎) but not in UΓ

according to the algorithm, there has to exist a sibling Γ| (𝑎′) such
that for all their practical utilities 𝑢𝑎′ , the constraints of S together
with 𝑢𝑝 ≥ 𝑢𝑎′,𝑝 are unsatisfiable. Otherwise, either the split would
not be null, or 𝑢 would have been added to UΓ . By Theorem 5.12, 𝑢
is not practical in Γ for all ®𝑥 that satisfy the constraints in S. □

The next lemma reasons about the negative output of ComputeSP.

Lemma C.4. Given an input instance Π, an honest history ℎ∗, a
security property 𝑠𝑝 and S the set of initial constraints 𝐶 and a case
case, if there exists a player group pg such that

ComputeSP(Π, ℎ∗, S, 𝑠𝑝, pg) = (false, null) ,
then

∀®𝑥 . ∀𝑐 ∈ 𝐶 ∪ case. 𝑐 [®𝑥] → ¬𝑠𝑝 (Γ, ℎ∗) [®𝑥] .

Proof. We prove the lemma per security property algorithm.
First, we consider security properties weak and weaker immu-
nity: There exists a player group such that ComputeSP returns
(false, null), iff ComputeWI returns (false, null) for pg. We pro-
ceed by structural induction. For the base case, we assume Γ is a leaf.
Following Algorithm 2, one can see in lines 1–9 that (false, null)
is returned if𝐶∪case∪𝑢pg < 0 is satisfiable but𝐶∪case∪𝑢pg ≥ 0
is unsatisfiable, where 𝑢 is the utility of the leaf respectively its real
part for weaker immunity. This implies that for all ®𝑥 that satisfy
𝐶 ∪ case the inequality 𝑢pg < 0 holds. Therefore, ¬𝑠𝑝 (Γ, ℎ∗) for all
such ®𝑥 .

For the induction step we assume Γ is a branch and by induction
hypothesis all subtrees of Γ satisfy the property. For the first case
we assume pg is not the current player in Γ. If (false, null) is
returned from ComputeWI, there had to be a child Γ| (𝑎) of Γ such
that ComputeWI returned false in line 14. Applying the induction
hypothesis this implies that for all ®𝑥 satisfying the constraints in
S Γ| (𝑎) is not weak(er) immune for pg. Let us now fix such an
®𝑥 arbitrarily. Following Theorem 5.8, we know that for values ®𝑥

the game Γ is not weak(er) immune for pg. Since ®𝑥 was chosen
arbitrarily, Γ is not weak(er) immune for pg for all ®𝑥 that satisfy the
constraints in S.

Secondly, assume pg is the current player and Γ is along ℎ∗ and
ComputeWI returned (false, null). Following Algorithm 2 lines 19–
21, this can only happen, if (false, null) was returned in line 21.
By induction hypothesis this implies that for all ®𝑥 satisfying the
constraints in S the subgame Γ| (𝑎∗) is not weak(er) immune for pg.
By Theorem 5.8, it follows that also Γ is not weak(er) immune for
pg, for all ®𝑥 satisfying the constraints in S.

Lastly, we assume pg is the current player and Γ is not along ℎ∗
and ComputeWI returned (false, null). According to the algorithm,
that implies that all children had returned (false, null) in line
25. By induction hypothesis, this means that all children are not
weak(er) immune for pg for all ®𝑥 satisfying the constraints in S.
Applying Theorem 5.8, it follows that also Γ is not weak(er) immune
for pg for all ®𝑥 satisfying 𝐶 ∪ case.

The property for collusion resilience holds due to the same
reasoning as for weak(er) immunity. For practicality, note that
ComputeSP(Π, ℎ∗, S, 𝑝𝑟, pg) = (false, null) iff ComputePR(Γ, ℎ∗, S)
returns (∅, null).

According to Lemma C.3 ComputePR(Γ, ℎ∗, S) = (∅, null) implies
that first Γ has to be along ℎ∗ (as otherwise no utility would be
practical in Γ for an arbitrary ®𝑥 satisfying the constraints in S, which
was proven impossible in Lemma C.1) and second that the honest
history is not practical in Γ for all ®𝑥 that satisfy the constraints in S.
This concludes the proof for practicality and, thus, the lemma. □

The last lemma we need to prove the theorem gives insight into
the positive output of the ComputeSP function:

Lemma C.5. Given an input instance Π, an honest history ℎ∗, a
security property 𝑠𝑝 and a set S of initial constraints 𝐶 and a case
case, if for all player groups pg

ComputeSP(Π, ℎ∗, S, 𝑠𝑝, pg) = (true, split) ,

independent of what split is, then

∀®𝑥 . ∀𝑐 ∈ 𝐶 ∪ case. 𝑐 [®𝑥] → 𝑠𝑝 (Γ, ℎ∗) [®𝑥] .

Proof. Let us fix a player group pg and assume 𝑠𝑝 is not 𝑝𝑟 . We
again prove the lemma by structural induction on the game tree
Γ. For the base case we assume Γ is a leaf and the return value is
(true, split). According to Algorithms 2 and 4, this can only happen
if𝐶∪case together with the negated property inequality of the leaf
utility𝑢 (𝑢pg < 0, respectively𝑢pg (ℎ∗) < 𝑢pg) is unsat. This implies
according to Theorems 5.8 and 5.10, that for all ®𝑥 satisfying𝐶∪case
the game Γ does not satisfy the security property for/against pg.
The induction step is analog to the one of Lemma C.4.

For 𝑠𝑝 = 𝑝𝑟 , we employ Lemma C.2 to conclude that Γ with
honest history ℎ∗ is practical for all ®𝑥 that satisfy the constraints in
S.

We showed that for all ®𝑥 that satisfy the constraints in S, Γ
with honest history ℎ∗ satisfies 𝑠𝑝 for/against pg. Since pg was
chosen arbitrarily, it holds for all player groups. We can further
separate the for-all quantification into both sides of the implication.
As the player group quantification and the ®𝑥 quantification are
independent, their order can be switched. By Theorem 5.6, it finally

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

follows that for all ®𝑥 that satisfy the constraints in S, the 𝑠𝑝 (Γ, ℎ∗)
holds. □

Theorem 6.4 (Correctness of Algorithm 1). The composi-
tional approach to compute the game-theoretic security of an input
instance Π for honest history ℎ∗ described in Algorithm 1 is sound
and complete. That is, SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, ∅) = true iff
Π with honest historyℎ∗ satisfies the property 𝑠𝑝 . Otherwise, it returns
false.

Proof. We prove direction “⇐” first, by contraposition. That
is, we assume SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, ∅) returns false and
show that Π with honest history ℎ∗ does not satisfy the security
property 𝑠𝑝 . From our assumption and Algorithm 1, we know that
for the return value to be false, there has to exist a set of utility
term comparisons case such that

SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, case) = false .

This implies that there has to exist a player group pg such that
function ComputeSP(Π, ℎ∗, S, 𝑠𝑝, pg) returns (false, null), where S
contains the constraints from 𝐶 , (defined in Π) and case.

We can now apply Lemma C.4 to conclude that for all values
of ®𝑥 that satisfy the (satisfiable) set of constraints in S, the game
Γ (of Π) with honest history ℎ∗ violates security property 𝑠𝑝 for
player group pg. The constraint set case can be extended to a total
order ⪯ on the utility terms 𝑇𝑢 . Thus, by the fact the all ®𝑥 that
satisfy 𝐶∪ ⪯ also satisfy 𝐶 ∪ case, it follows that for all ®𝑥 that
satisfy 𝐶∪ ⪯ security property 𝑠𝑝 does not hold for player group
pg. Using Theorem 3.9, this means Equation (1) does not hold.
That means exactly ¬𝑠𝑝 (Π, ℎ∗). Hence, the entire input instance Π
violates security property 𝑠𝑝 in general.

For the other direction “⇒”, we first assume that the function
SatisfiesProperty(Π, ℎ∗, 𝑠𝑝, ∅) returns true. Following then the
Algorithm 1, this implies that all final cases returned true. Further,
all considered cases are pair-wise disjoint, and their disjunction is
a tautology. Considering one such case case, it has to be the case
that for all player groups pg

ComputeSP(Π, ℎ∗, S, 𝑠𝑝, pg) = (true, split) ,

where the value of split is irrelevant and S contains the constraints
of 𝐶 and case. According to Lemma C.5, this implies that for all ®𝑥
that satisfy 𝐶 and case that security property 𝑠𝑝 holds for player
group pg, game Γ and honest history ℎ∗. As before, this implies
that for all total orders ⪯ extending case, the security property
holds for pg. Further, the disjunction of all total orders that extend
case is equivalent to case itself. Since this result holds for all the
considered cases and those cases span the considered universe, it
follows that for all total orderes ⪯ holds that all ®𝑥 that satisfy𝐶∪ ⪯
satisfy the security property for all player groups. According to
Theorem 3.9, follows Equation (1) holds. Hence, the input instance
Π with honest history ℎ∗ satisfies the security property.

Finally, we have to show that SatisfiesProperty always re-
turns either true or false. This is equivalent to proving termina-
tion. The Compute<SP> functions terminate since theywalk through
the finite game tree once, and all SMT queries are decidable, as
unquantified non-linear real arithmetic is decidable. Further, the
function SatisfiesProperty splits only on utility comparisons of

players/groups of players, which are also finitely many. Hence the
algorithm terminates. □

D Extracting Strategies and Finding

Counterexamples

Theorem 6.5 (Weak(er) Immune Strategies). For a weak(er)
immune game Γ, with honest history ℎ∗ and total order ⪯, strategy 𝜎
is honest and weak(er) immune for all ®𝑥 satisfying ⪯, where

𝜎 := (𝜎𝑝1 , . . . , 𝜎𝑝 |𝑁 |) ,
and 𝜎𝑝𝑖 ∈ 𝒮𝑝𝑖 is a strategy for player 𝑝𝑖 . Strategy 𝜎𝑝𝑖 picks the honest
choice along the honest history, whereas at other nodes, where it is
𝑝𝑖 ’s turn, it picks an arbitrary action 𝑎 that yields a weak(er) immune
for 𝑝𝑖 subtree after action 𝑎.

Proof. Consider 𝜎𝑝𝑖 ∈ 𝒮𝑝𝑖 as in the theorem. This strategy is
weak(er) immune for 𝑝𝑖 . To show this, consider an arbitrary joint
strategy 𝜏 . Then 𝑢𝑝𝑖 (𝜏𝑁−𝑝𝑖 , 𝜎𝑝𝑖) ≥ 0 (respectively its real part),
since along the generated history of (𝜏𝑁−𝑝𝑖 , 𝜎𝑝𝑖) either it is not
player 𝑝𝑖 ’s turn, in which case according to Theorem 5.8, all choices
have to be weak(er) immune for 𝑝𝑖 , or it is player 𝑝𝑖 ’s turn, in which
case we chose a weak(er) immune for 𝑝𝑖 action for 𝜎𝑝𝑖 . Eventually,
we thus have to reach a weak(er) immune for 𝑝𝑖 leaf. A leaf is
weak(er) immune for 𝑝𝑖 , iff its (real part of the) utility for 𝑝𝑖 is
non-negative for all ®𝑥 satisfying ⪯.

Applying now the proof of Theorem 5.6 for weak(er) immunity,
it follows that strategy 𝜎 is weak(er) immune for all ®𝑥 satisfying
⪯. □

For collusion resilience it is also possible to compute an hon-
est collusion resilient strategy compositionally. However, proving
that the constructed strategy is collusion resilient requires more
involved reasoning.

Theorem D.2 (Collusion Resilient Strategies). For a collu-
sion resilient game Γ, with honest historyℎ∗ and total order ⪯, strategy
𝜎 is honest and collusion resilient for all ®𝑥 satisfying ⪯, where we
proceed top-down and breath-first, to pick the following action for
strategy 𝜎 at history ℎ ∈ℋ \𝒯:

(1) if ℎ is along ℎ∗, pick the honest action 𝑎∗: 𝜎 (ℎ) = 𝑎∗;
(2) otherwise, maintain the set of players 𝑆 ⊆ 𝑁 that had to

deviate from 𝜎 to reach ℎ. Then pick an arbitrary action 𝑎,
for which the subtree Γ| (ℎ,𝑎) is collusion resilient against all
supersets of 𝑆 other than 𝑁 .

Note that in case (2) of Theorem D.2, there always exists an
action 𝑎, such that the subtree Γ| (ℎ,𝑎) is collusion resilient against
all supersets of 𝑆 other than 𝑁 . Theorem D.2 is also constructive,
yielding an algoritmic way to compute a collusion resilient strategy.
We can proceed in the same way as for weak immunity in Theo-
rem 6.5: during analysis for each player group pg and each branch,
we store whether the branch is collusion resilient against pg. If the
game turns out to be collusion resilient, we can collect the choices
for 𝜎 according to the theorem.

Proof. First, we have to prove that such a strategy always exists,
provided that ℎ∗ is collusion resilient. We fix an arbitrary total
order ⪯ and consider only values for ®𝑥 that satisfy ⪯. Towards a
contradiction, we assume we cannot pick an action according to the

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

theorem at history ℎ. We further assume ℎ is a shortest history with
that property. As we can always pick the honest choice along ℎ∗, ℎ
has to be off the honest history and for each choice 𝑎 ∈ 𝐴(ℎ) there
has to exist a superset of 𝑆 (other than 𝑁) against which Γ| (ℎ,𝑎) is
not collusion resilient.

Consider the set 𝑆 of players who had to deviate from the partially
defined strategy 𝜎 to reach ℎ. Pick now the last time in ℎ where a
player 𝑝 ∉ 𝑆 has a turn, and call the respective history 𝑡 . If only
players of 𝑆 ever have turns along ℎ, we define 𝑡 := ∅. In any case
Γ|𝑡 is collusion resilient against all supersets of 𝑆 (other than 𝑁)
by construction (since we could pick an action according to the
theorem to reach 𝑡 ; and if 𝑡 = ∅ because Γ is collusion resilient).

From the proof of Theorem 5.6.3 for collusion resilience follows
that there exists a strategy 𝜎𝑆 that is collusion resilient against all
supersets 𝑆 ′ of 𝑆 , 𝑆 ′ ≠ 𝑁 .

Consider action 𝑎 ∈ 𝐴(ℎ), with 𝜎𝑆 (ℎ) = 𝑎. Such an 𝑎 has to exist
since Γ|𝑡 is a supertree of Γ|ℎ . By assumption, Γ| (ℎ,𝑎) is not collusion
resilient against at least one 𝑆 ′. Fix such an 𝑆 ′. Therefore, there
exists a strategy 𝜏𝑎 ∈ 𝒮| (ℎ,𝑎) such that∑︁

𝑝∈𝑆 ′
𝑢∗𝑝 <

∑︁
𝑝∈𝑆 ′

𝑢 | (ℎ,𝑎),𝑝 (𝜎𝑆| (𝑡 ′,𝑎),𝑁−𝑆 ′ , 𝜏
𝑎
𝑆 ′) , (15)

where 𝑢∗ is the honest utility 𝑢 (ℎ∗) and 𝑡 ′ is the suffix of ℎ after 𝑡 :
(𝑡, 𝑡 ′) = ℎ.

Towards a contradiction, we construct 𝜏 ∈ 𝒮|𝑡 as follows. Let
𝜏 | (𝑡 ′,𝑎) = 𝜏𝑎 , and let 𝜏 yield (𝑡 ′, 𝑎). The rest can be picked arbitrarily.
It can be observed that

𝑢 | (ℎ,𝑎) (𝜎𝑆| (𝑡 ′,𝑎),𝑁−𝑆 ′ , 𝜏
𝑎
𝑆 ′) = 𝑢 |𝑡 (𝜎𝑆𝑁−𝑆 ′ , 𝜏𝑆 ′) , (16)

as only players 𝑝 ∈ 𝑆 ′ have turns in 𝑡 ′, 𝜎𝑆 (ℎ) = 𝑎, 𝜏 (ℎ) = 𝑎 and
ℎ = (𝑡, 𝑡 ′). But 𝜎𝑆 is collusion resilient against 𝑆 ′ in Γ𝑡 , hence∑︁

𝑝∈𝑆 ′
𝑢 |𝑡,𝑝 (𝜎𝑆𝑁−𝑆 ′ , 𝜏𝑆 ′) ≤

∑︁
𝑝∈𝑆 ′

𝑢∗𝑝 . (17)

Finally, Equations (15) to (17) yield a contradiction.
What remains to be shown is that the constructed strategy 𝜎

is collusion resilient and honest in Γ. It yields the honest history
ℎ∗ by construction. We again prove the collusion resilience by
contradiction and assume 𝜎 is not cr (but the tree Γ still is collusion
resilient, for another strategy). Then, there has to exist a set of
players 𝑆 ⊂ 𝑁 and a strategy 𝜏 ∈ 𝒮 such that∑︁

𝑝∈𝑆
𝑢𝑝 (𝜎) =

∑︁
𝑝∈𝑆

𝑢∗𝑝 <
∑︁
𝑝∈𝑆

𝑢𝑝 (𝜎𝑁−𝑆 , 𝜏𝑆) . (18)

Let ℎ be the prefix of history𝐻 (𝜎𝑁−𝑆 , 𝜏𝑆) at which for the last time
in 𝐻 (𝜎𝑁−𝑆 , 𝜏𝑆) an honest player 𝑝 = 𝑃 (ℎ) ∉ 𝑆 has a turn. Note that
such an ℎ has to exist and has to be off the honest history ℎ∗. If this
were not the case, 𝜏 would cause every honest strategy to not be
collusion resilient as the right side of inequality in (18) would not
depend on 𝜎𝑁−𝑆 at all, which would imply that ℎ∗ is not collusion
resilient.

By the construction of 𝜎 , we know that 𝑎 = 𝜎 (ℎ) leads to a
subtree Γ| (ℎ,𝑎) that is collusion resilient against the set of deviating
players 𝑆𝑑 (deviating from 𝜎 to ℎ) and all supersets (other than 𝑁).
Further, 𝑆 ⊇ 𝑆𝑑 is such a superset, since more players could deviate
from 𝜎 in other parts of the tree. Hence, there exists a strategy

𝜎𝑆 ∈ 𝒮| (ℎ,𝑎) that is collusion resilient against 𝑆 . Therefore, also for
the considered strategy 𝜏∑︁

𝑝∈𝑆
𝑢∗𝑝 ≥

∑︁
𝑝∈𝑆

𝑢 | (ℎ,𝑎),𝑝 (𝜎𝑆𝑁−𝑆 , 𝜏 | (ℎ,𝑎),𝑆) . (19)

Note that afterℎ nomore honest players have a turn in𝐻 (𝜎𝑁−𝑆 , 𝜏𝑆),
and (𝜎𝑁−𝑆 , 𝜏𝑆) (ℎ) = 𝜎 (ℎ) = 𝑎, because 𝑃 (ℎ) ∈ 𝑁 − 𝑆 . Therefore,
𝐻 (𝜎𝑁−𝑆 , 𝜏𝑆) = (ℎ, 𝑎, 𝐻 (𝜏 | (ℎ,𝑎))). This implies that also no honest
player has a turn in 𝐻 (𝜎𝑆

𝑁−𝑆 , 𝜏 | (ℎ,𝑎),𝑆), as 𝐻 (𝜎
𝑆
𝑁−𝑆 , 𝜏 | (ℎ,𝑎),𝑆) =

𝐻 (𝜏 | (ℎ,𝑎)). Since the histories align, the strategies also have to
yield the same utilities 𝑢 (𝜎𝑁−𝑆 , 𝜏𝑆) = 𝑢 | (ℎ,𝑎) (𝜎𝑆𝑁−𝑆 , 𝜏 | (ℎ,𝑎),𝑆). This
contradicts Equations (18) and (19) and shows that 𝜎 is an honest
and collusion resilient strategy. □

Theorem D.3 (Practical Strategies). Let Γ be a game tree, ⪯
a total order, ℎ ∈ ℋ a history. Further, let 𝑢 be a utility practical
(under ⪯) in Γ|ℎ . The following strategy 𝜎𝑢 ∈ 𝒮|ℎ yields utility 𝑢 and
is practical (under ⪯).

(1) For action 𝑎 ∈ 𝐴(ℎ), where 𝑢 is practical in Γ| (ℎ,𝑎) (under ⪯)
we set 𝜎𝑢 (ℎ) = 𝑎 and 𝜎𝑢| (𝑎) = 𝜎𝑢,𝑎 , where 𝜎𝑢,𝑎 ∈ 𝒮| (ℎ,𝑎) is a
practical strategy in Γ| (ℎ,𝑎) that yields utility 𝑢.

(2) For all other 𝑎′ ∈ 𝐴(ℎ) \ {𝑎} we define 𝜎𝑢| (𝑎′) = 𝜎𝑢
′,𝑎′ , where

𝑢′ is a utility practical in Γ| (ℎ,𝑎′) , 𝜎𝑢| (𝑎′) a practical strategy
yielding 𝑢′ and for all ®𝑥 satisfying ⪯: 𝑢𝑃 (ℎ) [®𝑥] ≥ 𝑢′

𝑃 (ℎ) [®𝑥].

Similarly to our previous results, Theorem D.3 provides an al-
gorithmic solution to extract a practical strategy for the honest
history. For a game tree Γ with practical honest history ℎ∗ and
total order ⪯, an honest and practical strategy can be computed as
follows: bottom-up, for each subtree and each practical utility, a
corresponding practical strategy is stored. When proceeding one
level up, we do as stated in Theorem D.3. Along the honest history,
the only stored practical strategy is the one for the honest utility
𝑢∗ = 𝑢 (ℎ∗) as, ultimately, this is the only one required at the root.

Proof. According to Theorem 5.12, 𝑢 can only be practical in
Γ|ℎ , if it was practical in at least one child Γ| (ℎ,𝑎) . For every other
child 𝑎′ there had to exist a utility 𝑢′ practical in Γ| (ℎ,𝑎′) such that
𝑢𝑃 (ℎ) ≥ 𝑢′

𝑃 (ℎ) . Hence, strategy 𝜎𝑢 can always be constructed. It
further yields utility 𝑢 (by construction) and is practical since by
construction and the proof of Lemma C.1 no player can at any point
of the game deviate profitably. □

Pseudo-Algorithm for Counterexamples to Collusion Re-
silience. When analyzing the collusion resilience against a group
of players 𝑆 , whenever it is the turn of one of the players in 𝑆 and
there exists an action leading to a not collusion resilient against 𝑆
subtree (line 14 with split = null in Algorithm 4), we store the action,
the current history and player group 𝑆 .

After the analysis terminated and the result was not collusion
resilient, we generate a counterexample of the collusion resilience
against player group 𝑆 by walking through the tree again: Starting
from the root, we proceed as follows, assuming the current history
is ℎ.
• If 𝑃 (ℎ) ∉ 𝑆 and ℎ is along the honest history, we follow the
honest action to the honest subtree. This is sufficient since
an honest player 𝑃 (ℎ) follows the honest history.

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

• If 𝑃 (ℎ) ∉ 𝑆 but ℎ is not along the honest history, all choices
had to lead to not collusion resilient against 𝑆 subtrees for
the current tree to be not collusion resilient against 𝑆 . We,
therefore, have to follow all choices to compute a counterex-
ample.
• Otherwise, if 𝑃 (ℎ) ∈ 𝑆 , we check our stored data for a choice
𝑎 that is not collusion resilient against 𝑆 . By construction
and Theorem 5.10, it has to exist. We add it to our partial
strategy 𝑠𝑆 , i.e. 𝑠𝑆 (ℎ) = 𝑎. Then, we continue at history (ℎ, 𝑎).
• At a leaf nothing has to be considered. A not collusion re-
silient against 𝑆 leaf has a joint utility for 𝑆 greater than their
joint honest utility.

With the same arguments as for weak(er) immunity, we conclude
that the generated partial strategy 𝑠𝑆 together with player group 𝑆
is a counterexample to the collusion resilience of game Γ with the
considered honest history.

Pseudo-Algorithm for Counterexamples to Practicality.
When analyzing the tree according to Algorithm 5, we can only
return “false” (i.e. an empty list), together with case split null along
the honest history. This is the case exactly when, for at least one
sibling, all practical utilities are strictly better for the current player
than the honest one (line 15). Before returning, we store the action
𝑎 leading to said sibling together with the set of its practical utilities
U(ℎ, 𝑎). For convenience, we also provide the histories 𝑡 ∈ℋ| (ℎ,𝑎)
to those utilities 𝑢 (𝑡) = 𝑢 ∈ U(ℎ, 𝑎). Using Theorem 5.12, we thus
computed a counterexample to practicality.

Remark. It is also possible to compute all counterexamples to a
security property. This can be done by simply storing all actions
that lead to not weak(er) immune, respectively collusion resilient
subtrees in the pseudo-algorithms, for weak(er) immunity and col-
lusion resilience. For practicality, it requires storing all siblings
along the entire honest history, whose practical utilities lead to a
better-than-honest utility.

E Benchmarks

The experimental results of all benchmarks are reported in Table 3.
Further, the exhaustive data for counterexample generation is pre-
sented in Table 4. Note that in the last line of Table 4, where the
runtime for counterexample generation of the Unlocking Routing
benchmark is listed, we report error. This means that when running
CheckMate on that instance we encountered an exception thrown
from CheckMate’s Z3 backend.

As briefly mentioned in Section 7, we also compared the two
approaches in terms of efficiency for strategy extraction and report
the results in Table 5. The findings closely mirror those observed
for counterexamples. Firstly, strategy extraction in the composi-
tional approach outperforms the previous method across nearly
all benchmarks. Secondly, the compositional approach incurs al-
most no additional overhead for strategy extraction, maintaining
its overall runtime efficiency.

One benchmark that stands out is Tic Tac Toe, where the addi-
tional overhead for strategy extraction is clearly noticeable for col-
lusion resilience and practicality. However, strategy extraction for
these properties is still achievable within reasonable time, namely

18 seconds for collusion resilience and 276 seconds for practi-
cality. This represents a significant improvement over the non-
compositional approach, which takes 347 seconds for collusion
resilience and fails to terminate within the 8-hour time limit for
practicality.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

Game Nodes Players Security Secure Time Nodes Nodes Calls

property yes/no evaluated evaluated

CheckMate2.0/CheckMate
Splitswi 5 2 wi y 0.010 / 0.018 5 18 / 10 10 / 3
(𝑞) weri y 0.010 / 0.018 5 18 / 10 10 / 3

cr y 0.010 / 0.015 4 / 5 6 / 10 3 / 1
pr y 0.011 / 0.017 5 25 / 5 19 / 3

Splitscr 5 2 wi y 0.011 / 0.019 4 / 5 6 / 10 3 / 1
(𝑛) weri y 0.011 / 0.019 4 / 5 6 / 10 3 / 1

cr y 0.011 / 0.018 5 16 / 10 10 / 3
pr y 0.011 / 0.018 5 15 / 5 20 / 3

Market Entry 5 2 wi n 0.011 / 0.014 5 8 / 10 5 / 1
(𝑒, 𝑖) weri n 0.010 / 0.014 5 8 / 10 5 / 1

cr y 0.010 / 0.014 5 8 / 10 4 / 1
pr y 0.010 / 0.015 5 5 2 / 1

G 5 2 wi n 0.010 / 0.012 5 / 5 28 / 10 18 / 4
(𝑟𝐴, 𝑙𝐵) weri n 0.009 / 0.012 5 / 5 28 / 10 18 / 4

cr n 0.008 / 0.010 2 / 5 2 / 10 2 / 1
pr n 0.009 / 0.010 5 / 5 9 / 5 5 / 1

Simplified Closing 8 2 wi y 0.009 / 0.012 8 10 / 16 8 / 1
(𝐻) weri y 0.009 / 0.011 8 10 / 16 8 / 1

cr y 0.008 / 0.011 7 / 8 9 / 16 6 / 1
pr n 0.009 / 0.012 8 8 8 / 1

(𝐶ℎ, 𝑆) wi n 0.008 / 0.012 3 / 8 3 / 16 2 / 1
weri n 0.008 / 0.011 3 / 8 3 / 16 2 / 1
cr y 0.008 / 0.012 8 11 / 16 7 / 1
pr y 0.009 / 0.013 8 8 6 / 1

Simplified Routing 17 5 wi n 0.008 / 0.012 7 / 17 7 / 85 2 / 1
(𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈) weri y 0.009 / 0.011 17 77 / 85 28 / 1

cr n 0.010 / 0.017 16 / 17 105 / 510 24 / 1
pr y 0.009 / 0.012 17 17 8 / 1

Centipede 19 3 wi n 0.044 / 0.051 19 602 / 57 345 / 18
(𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶) weri n 0.033 / 0.052 19 602 / 57 345 / 18

cr n 0.044 / 0.038 19 534 / 114 305 / 9
pr n 0.011 / 0.028 19 103 / 19 39 / 7

EBOS 31 4 wi n 0.009 / 0.013 28 / 31 38 / 124 21 / 1
(𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒) weri n 0.008 / 0.013 28 / 31 38 / 124 21 / 1

cr n 0.039 / 0.021 31 476 / 434 304 / 4
pr n 0.019 / 0.024 31 167 / 31 184 / 5

Pirate 79 4 wi n 0.010 / 0.015 10 / 79 10 / 316 5 / 1
(𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦) weri n 0.009 / 0.016 10 / 79 10 / 316 5 / 1

cr n 0.041 / 0.029 79 622 / 1106 368 / 4
pr n 0.036 / 0.049 79 482 / 79 554 / 8

Auction 92 4 wi n 0.012 / 0.033 16 / 92 16 / 368 9 / 1
(𝐸, 𝐸, 𝐼 , 𝐼) weri y 0.016 / 0.027 90 / 92 229 / 368 162 / 1

cr n 0.018 / 0.030 66 / 92 128 / 1,288 103 / 1
pr y 0.021 / 0.145 92 92 188 / 1

Closing 221 2 wi y 0.011 / 0.024 20 / 221 22 / 442 16 / 1
(𝐻) weri y 0.010 / 0.021 20 / 221 22 / 442 16 / 1

cr y 0.012 / 0.023 44 / 221 46 / 442 36 / 1
pr n 0.097 / 0.346 221 568 / 221 1454 / 1

(𝐶ℎ, 𝑆) wi y 0.011 / 0.024 33 / 221 36 / 442 25 / 1
weri y 0.011 / 0.020 33 / 221 36 / 442 25 / 1
cr y 0.013 / 0.023 60 / 221 63 / 442 48 / 1
pr y 2.144 / 0.345 221 14353 / 221 38220 / 1

3-Player Routing 21,688 3 wi n 0.248 / 0.984 16 / 21,688 16 / 65,064 9 / 1
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈) weri y 0.514 / 1.008 7,084 / 21,688 7,570 / 65,064 5,441 / 1

cr n 0.272 / 1.886 430 / 21,688 474 / 130,128 299 / 1
pr n 33.162 / 34.717 21,688 416,156 / 21,688 569,418 / 13

Unlocking Routing 36,113 5 wi n 0.621 / 2.121 1,184 / 36,113 1,184 / 180,565 714 / 1
(𝑈 ,𝑈 ,𝑈 ,𝑈) weri y 1.525 / 1.625 32,429 / 36,113 55,090 / 180,565 27,897 / 1

cr n 0.584 / 15.247 319 / 36,113 373 / 1,083,390 60 / 1
pr y 2.848 / 4.382 36,113 / 36,113 36,113 / 36,113 46,636 / 1

Tic Tac Toe Concise 58,748 2 wi y 0.557 / 6.372 1,345 / 58,748 1,355 / 117,496 698 / 1
(𝐶𝑀, 𝐿𝑈 , 𝑅𝑈 , 𝐿𝐷, 𝐿𝑀 weri y 0.541 / 6.373 1,345 / 58,748 1,355 / 117,496 698 / 1
𝑅𝑀,𝐶𝑈 ,𝐶𝐷, 𝑅𝐷) cr y 0.543 / 7.352 1,345 / 58,748 1,355 / 117,496 698 / 1

pr y 3.937 / 227.807 58,748 / 58,748 58,748 / 58,748 57,250 / 1
Tic Tac Toe 549,946 2 wi y 5.276 / 255.368 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
(𝐶𝑀, 𝑅𝑈 , 𝐿𝑈 , 𝑅𝐷, 𝑅𝑀, weri y 5.256 / 255.600 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1
𝐿𝑀,𝐶𝑈 ,𝐶𝐷, 𝐿𝐷) cr y 5.302 / 286.574 18,026 / 549,946 18,036 / 1,099,892 10,694 / 1

pr y 36.530 / TO 549,946 / TO 549,946 / TO 527,198 / TO

Table 3: Full experimental results of game-theoretic security, using the compositional CheckMate2.0 approach and the

non-compositional CheckMate setting of [Rain et al. 2024]. Runtimes are given in seconds, with a timeout (TO) after 8 hours.

For each game, columns 2–3 list the size (tree nodes and game players) of the game from column 1. Column 4 shows the

game-theoretic security property we analyzed and (dis)proved, as indicated in column 5. Columns 6–9 presents the results of

CheckMate2.0 compared to CheckMate, using the slash / sign.

forsyte, 2025, Vienna, Austria Ivana Bocevska, Anja Petković Komel, Laura Kovács, Sophie Rain, and Michael Rawson

Game Property Time (one CE) Time (all CE)

CheckMate2.0/CheckMate CheckMate2.0/CheckMate

Market Entry wi 0.010 / 0.016 0.010 / 0.023
(𝑒, 𝑖) weri 0.010 / 0.017 0.009 / 0.019
G wi 0.010 / 0.013 0.010 / 0.020
(𝑟𝐴, 𝑙𝐵) weri 0.010 / 0.014 0.009 / 0.020

cr 0.008 / 0.011 0.008 / 0.013
pr 0.009 / 0.016 0.009 / 0.028

Simplified Closing (𝐻) pr 0.009 / 0.019 0.008 / 0.019
(𝐶ℎ, 𝑆) wi 0.009 / 0.014 0.008 / 0.016

weri 0.009 / 0.014 0.008 / 0.014
Simplified Routing wi 0.009 / 0.014 0.010 / 0.033
(𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈) cr 0.010 / 0.023 0.016 / 0.096
Centipede wi 0.046 / 0.049 0.080 / 0.495
(𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶,𝐶) weri 0.034 / 0.050 0.061 / 0.495

cr 0.045 / 0.047 0.078 / 0.538
pr 0.012 / 0.062 0.022 / 0.400

EBOS wi 0.010 / 0.015 0.011 / 0.058
(𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒,𝑀𝑖𝑛𝑒) weri 0.010 / 0.015 0.010 / 0.057

cr 0.040 / 0.028 0.057 / 10.760
pr 0.020 / 0.032 0.021 / 0.032

Pirate wi 0.010 / 0.020 0.157 / 9.465
(𝑦, 𝑛, 𝑛, 𝑛,𝑦,𝑦) weri 0.009 / 0.020 0.157 / 9.495

cr 0.041 / 0.039 3.232 / 79.839
pr 0.037 / 0.064 7.414 / 35.227

Auction wi 0.012 / 0.048 0.025 / 4.172
(𝐸, 𝐸, 𝐼 , 𝐼) cr 0.018 / 0.066 0.036 / 15.106
Closing (𝐻) pr 0.096 / 0.650 2.204 / 8.846
3-Player Routing wi 0.251 / 1.925 5.909 / 110.716
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈) cr 0.279 / 5.619 1.657 / 7.815

pr 33.561 / 46.480 291.236 / 3 033.784
Unlocking Routing wi 0.602 / 5.219 2.090 / 1 988.997
(𝑈 ,𝑈 ,𝑈 ,𝑈) cr 0.564 / 116.906 3.562 / error

Table 4: Full experiments on counterexample (CE) generation using our CheckMate2.0 approach and the non-compositional

CheckMate tool of [Rain et al. 2024]. Runtimes are given in seconds; error means we encountered an exception thrown from

CheckMate’s Z3 backend.

Divide and Conquer: A Compositional Approach to Game-Theoretic Security forsyte, 2025, Vienna, Austria

Game Property Time

CheckMate2.0/CheckMate

Splitswi wi 0.010 / 0.019
(𝑞) weri 0.010 / 0.018

cr 0.010 / 0.015
pr 0.011 / 0.017

Splitscr wi 0.011 / 0.018
(𝑛) weri 0.011 / 0.018

cr 0.011 / 0.019
pr 0.011 / 0.018

Market Entry cr 0.010 / 0.014
(𝑒, 𝑖) pr 0.010 / 0.014
Simplified Closing wi 0.009 / 0.012
(𝐻) weri 0.009 / 0.011

cr 0.009 / 0.012
(𝐶ℎ, 𝑆) cr 0.010 / 0.012

pr 0.010 / 0.014
Simplified Routing weri 0.010 / 0.011
(𝑆𝐻 , 𝐿, 𝐿, 𝐿, 𝐿,𝑈 ,𝑈 ,𝑈 ,𝑈) pr 0.010 / 0.012
Auction weri 0.017 / 0.028
(𝐸, 𝐸, 𝐼 , 𝐼) pr 0.022 / 0.153
Closing wi 0.011 / 0.025
(𝐻) weri 0.011 / 0.022

cr 0.023 / 0.025
(𝐶ℎ, 𝑆) wi 0.012 / 0.025

weri 0.011 / 0.021
cr 0.024 / 0.025
pr 2.185 / 0.0364

3-Player Routing weri 0.539 / 1.163
(𝑆𝐻 , 𝐿, 𝐿,𝑈 ,𝑈)
Unlocking Routing weri 2.194 / 4.233
(𝑈 ,𝑈 ,𝑈 ,𝑈) pr 4.241 / 5.718
Tic Tac Toe Concise wi 0.556 / 7.003
(𝐶𝑀, 𝐿𝑈 , 𝑅𝑈 , weri 0.561 / 7.780
𝐿𝐷, 𝐿𝑀, 𝑅𝑀, cr 1.883 / 8.894
𝐶𝑈 ,𝐶𝐷, 𝑅𝐷) pr 8.644 / 219.689
Tic Tac Toe wi 5.509 / 276.333
(𝐶𝑀, 𝑅𝑈 , 𝐿𝑈 , weri 5.507 / 306.763
𝑅𝐷, 𝑅𝑀, 𝐿𝑀, cr 18.608 / 347.093
𝐶𝑈 ,𝐶𝐷, 𝐿𝐷) pr 276.719 / TO

Table 5: Full experiments on strategy extraction using our CheckMate2.0 approach and the non-compositional CheckMate

tool of [Rain et al. 2024]. Runtimes are given in seconds, with a timeout (TO) after 8 hours.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Game-Theoretic Security Properties
	3.1 Security Properties for Subgames
	3.2 Total Orders
	3.3 Counterexamples

	4 Unsound Naïve Approach to Compositionality
	5 Compositional Game-Theoretic Security
	5.1 Security Properties Stratified over Players
	5.2 Splitting and Combining Player-Wise Security Properties

	6 Automating Compositional Security Analysis
	6.1 Divide-and-Conquer Algorithms for Compositional Security
	6.2 Extracting Compositional Strategies
	6.3 Finding Compositional Counterexamples

	7 Experimental Evaluation
	8 Related Work and Conclusions
	Acknowledgments
	References
	A Compositionality Proofs
	B Algorithms
	C Soundness and Completeness Proofs
	D Extracting Strategies and Finding Counterexamples
	E Benchmarks

