
EasyChair Preprint
№ 15529

Optimization-Based Urban Network Traffic
Management with Mixed Autonomy
Incorporating Dynamic Saturation Rates

Muhammad Haris, Claudio Roncoli and Ramin Niroumand

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 4, 2024



Optimization-based Urban Network Traffic Management
with Mixed Autonomy Incorporating Dynamic Saturation

Rates

Muhammad Haris1, Claudio Roncoli2, and Ramin Niroumand3

1Doctoral Researcher, Department of Built Environment, Aalto University, Finland
2Associate Professor, Department of Built Environment, Aalto University, Finland

3Postdoctoral Researcher, Department of Built Environment, Aalto University,
Finland

SHORT SUMMARY

This work introduces a novel optimization-based control framework for managing traf-
fic flow in a network with mixed autonomy, where both Connected and Automated Vehicles
(CAVs) and Human-Driven Vehicles coexist. The proposed model extends the store-and-
forward model by incorporating a dynamic saturation flow rate, which considers the autonomy
level of queues. The problem is formulated as a non-convex Quadratic Program (QP), which
accounts for the dynamic aspects of the traffic network in terms of queue lengths, spillback,
green time allocation, routing of CAVs, and dynamic saturation flow rate. To solve the non-
convex QP problem, we employ a computationally efficient heuristic algorithm, which treats
the dynamic saturation flow rate as a parameter outside the optimization framework, convert-
ing the non-convex problem into a series of convex subproblems. Numerical results on a grid
network demonstrate the performance of the proposed methodology.

Keywords: Mixed traffic, store-and-forward modelling, multi-commodity traffic, connected
and automated vehicles.

1 INTRODUCTION
Road traffic congestion continues to negatively affect cities worldwide, demanding innovative so-
lutions. One promising approach lies in leveraging emerging technologies, such as Connected
and Automated Vehicles (CAVs), via appropriate management strategies to improve traffic condi-
tions (Papamichail et al., 2019). In fact, (semi-)automated driving has the potential to significantly
decrease urban traffic congestion (Foxx et al., 2017). Since vehicles are equipped with technologies
that enable, e.g., platooning, via adaptive cruise control or cooperative adaptive cruise control,
the inclusion of CAVs in the urban traffic setting may allow an increase of the network capac-
ity by maintaining shorter headways (Lioris, Pedarsani, Tascikaraoglu, & Varaiya, 2017; Roncoli,
2019; Lazar, Coogan, & Pedarsani, 2020). However, mixed autonomy, i.e., the coexistence of CAVs
with Human Driven Vehicles (HDVs) poses management challenges, not only in terms of traffic
characteristics but also in the definition of integrated traffic management strategies. Therefore,
developing integrated management strategies for mixed traffic is crucial because it can enable a
positive impact on efficiency, safety, mobility, and ultimately sustainability of the overall trans-
portation systems (Taiebat, Brown, Safford, Qu, & Xu, 2018; Mavromatis, Tassi, Piechocki, &
Sooriyabandara, 2020).

This work deals with mixed traffic in urban traffic networks by formulating an integrated
problem for optimizing traffic signals and CAV routing. We propose an extension to the store-and-
forward model, which incorporates a multi-commodity component, for CAVs, coupled with a single-
commodity component, for HDVs. Furthermore, to account for the different driving characteristics
and platooning effects, we account for time-and space-varying saturation rates. The proposed
model is integrated into an optimization problem, which is then solved via a heuristic approach.
The final aim is to pave the way for a more efficient and responsive urban traffic management
system in a mixed autonomy environment.
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Table 1: Mathematical notation

Symbol Description Symbol Description
Z Set of links J Set of nodes (intersections)
D ⊂ Z Set of destinations (CAVs and

HDVs)
D̄ Set of destinations (except

HDVs): D̄ = D − {0}
C Cycle time K Total number of time steps
L(j) Lost time (red phase) T Discrete time step period
k Discrete time index (k =

0, 1, . . . ,K)
w1, w2, w3, w4 Weights of the penalty terms

in the optimization objective
F(z,d) Network parameter for short-

est path between link z and
destination d

x(z,d,k) Queue length of link z directed
to destination d

xmax
(z) Maximum queue length of link

z
q(z,d,k) Outflow of link z directed to

destination d
p(z,d,k) Inflow of link z directed to des-

tination d
b(z,d,k) Demand flow entering link z

directed to destination d
r(z,d,k) Exit flow leaving link z di-

rected to destination d
g(j,i,k) Green time at intersection j for

phase i
gmin
(j,i) Minimum green time at inter-

section j for phase i
A(j) Set of phases pertaining to in-

tersection j
B(z) Set of phases admitting right

of way (r.o.w) to link z
O(j) Set of outgoing links at inter-

section j
I(j) Set of incoming links at inter-

section j
JD(z) Downstream intersection per-

taining to link z
JU (z) Upstream intersection pertain-

ing to link z
f(z,m,d,k) Transport-flow vector of link z

towards downstream link m di-
rected to destination d

G(z,m,d,k) Operational green time of link
z towards downstream link m
directed to destination d

s(z,k) Dynamic saturation flow rate
of link z

hHDV Headway of HDVs hCAV Headway of CAVs
t(z,m) Turning rate of HDVs travers-

ing link z towards link m
e(z,m) Exit turning rate of HDVs at

link z
Θ Measure of autonomy level of

link
ε Small value to avoid division-

by-zero
The parameters and optimization variables that are indexed by k refer to value at time instant k.

2 METHODOLOGY

2.1 Mathematical modelling
We consider a digraph representing the urban network, which is composed of a directed set of arcs
(links) z ∈ Z and a set of nodes (intersections) j ∈ J . The links z are connecting intersections and
certain links are free at one end as they are entry or exiting links. Each intersection j is signalized
(controlled traffic signal) and is associated with incoming links i ∈ I(j) and outgoing links m ∈ O(j).
Furthermore, we consider that all intersections observe the same cycle time C(j) = C, ∀ j ∈ J , which
is assumed constant and equal to the time step of our model C = T (Aboudolas, Papageorgiou,
& Kosmatopoulos, 2009). The model is formulated in discrete time, indexed by k = 0, 1, 2, . . . ,K,
where each time instant represents a signal cycle of duration T ; thus, the overall horizon is [0,KT ].

The signal control plan for intersection j (including the fixed lost time L(j)) is assigned as a
fixed number of phases from the set A(j), while B(z) indicates the set of phases where link z has
right of way (r.o.w.).

Moreover, we consider that each link is characterized by the queue length (number of vehicles),
defined separately for CAVs and HDVs, and, for the former also divided by destination, which
is updated according to the store-and-forward model (Aboudolas et al., 2009). In this modeling
approach, we determine for each intersection the traffic signal plan, i.e., green time duration, which
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in turn is distributed to the operational green times of the links according to their destination and
vehicular type. In particular, we assume that the destination of HDVs is not known (and they are
distributed to outgoing links according to measured turning rates), while CAVs can be redirected
to their destination following specific routing commands.

Therefore, to devise the resulting mathematical framework of multi-destination mixed traffic
store and forward modeling, extending the works by (Aboudolas et al., 2009; Han, Hegyi, Yuan,
Roncoli, & Hoogendoorn, 2018; De Souza, Carlson, Müller, & Ampountolas, 2020), we present the
following framework, as:

min w1

K∑
k=0

∑
z∈Z

∑
d∈D̄

x2
(z,d,k)

xmax(z)
+ w2

K∑
k=0

∑
z∈Z

x2
(z,0,k)

xmax(z)

+ w3

∑
z∈Z

∑
d∈D̄

F(z,d)x(z,d,K) + w4

K∑
k=1

∑
j∈J

∑
i∈A(j)

(
g(j,i,k) − g(j,i,k−1)

)2 (1.1)

s.t.

x(z,d,k+1) = x(z,d,k) + C
(
p(z,d,k) − q(z,d,k) + b(z,d,k) − r(z,d,k)

)
, z ∈ Z, d ∈ D (1.2)∑

i∈A(j)

g(j,i,k) = C − L(j), j ∈ J (1.3)

g(j,i,k) ≥ gmin(j,i), i ∈ A(j), j ∈ J (1.4)

0 ≤
∑

m∈O(j),d∈D

G(z,m,d,k) ≤
∑

i∈B(z)

g(j,i,k), j = JD(z) (1.5)

f(z,m,d,k) =

{
G(z,m,d,k)s(z,k)

C , z ̸= d,m ∈ O(j), j = JD(z)

t(z,m)q(z,d,k), d = 0
(1.6)

q(z,d,k) =

{
x(z,d,k)

C , z = d∑
m∈O(j)

f(z,m,d,k), z ̸= d, d ∈ D, j = JD(z)

(1.7)

p(z,d,k) =
∑
i∈I(j)

f(i,z,d,k), z ∈ Z, d ∈ D, j = JU(z) (1.8)

r(z,d,k) = e(z)
x(z,d,k)

C
, z ∈ Z (1.9)

0 ≤
∑
d∈D

x(z,d,k) ≤ xmax(z), z ∈ Z (1.10)

x(z,d,k=0) = x0(z,d,k), z ∈ Z, d ∈ D (1.11)

s(z,k) =

∑
d∈D x(z,d,k)

hCAV

∑
d∈D̄ x(z,d,k) + hHDV x(z,0,k)

, z ∈ Z (1.12)

1

hHDV
≤ s(z,k) ≤

1

hCAV
, z ∈ Z (1.13)

The optimization problem is defined over the discrete-time indices of k = 0, ...,K − 1.
The presented optimization problem (1), is a non-convex Quadratic Program (QP) that is

NP-hard in terms of computational complexity (Van Leeuwen, 1991).

2.2 Objective Function
The objective minimizes a cost function (1.1) consisting of four terms: the first and second terms
are the main components of the optimal control problem, which attempts to reduce and harmonize
the relative total queue length for each link: the first term relates to the CAVs while the second
term relates to the HDVs. The purpose of the third term is as a terminal cost for CAVs (which
are also routed), where F(z,d) is the result of a modified version of the Floyd–Warshall algorithm
to compute the distance between each link-destination pair; this value is multiplied by the queue
length of CAVs and it intends to bring vehicles to their respective destination while following the
shortest possible path(s). The fourth term is a penalty term to suppress fluctuations in the signal
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Figure 1: It shows that CAVs can platoon behind any vehicle, and they take a nominal time-
headway of hCAV , while HDVs are taking a longer time-headway of hHDV .

control timing at each intersection j and for each phase i over consecutive time steps: this term
ensures that the controller mitigates abrupt distributions of signal timings. Each term has attached
weights w1, w2, w3, and w4, which can be adjusted, e.g., via trial-and-error.

2.3 Constraints
Constraint (1.2) defines the dynamics of the queue lengths of each link as a conservation equation,
where each link has associated inflows and outflows from either other links, i.e., p and q, respec-
tively, or from the outside, i.e., b and r, respectively, where the latter sink is only defined for HDVs
leaving the network. The constraints (1.3) - (1.4) are associated with the controller signal timing
for each intersection j and the set of phases i ∈ A(j). Constraint (1.3) ensures that the green
times are distributed during the entire cycle, while (1.4) acts as the lower bound of each phase
and intersection. Constraint (1.5) allows the controller to distribute the allocated time of inter-
section for a particular link (which has r.o.w.) over the outgoing links m ∈ O(j) and destinations
d. In constraint (1.6), a transport-flow vector f(z,m,d,k) is defined to compute the outflow from
link z towards link m for CAVs and HDVs. The first segment utilizes operational green time with
varying saturation to determine the respective outflow for CAVs and HDVs alike, while the second
segment dictates that only HDVs (d = 0) must follow predefined (measured) turning rates t(z,m).
Constraints (1.7)–(1.8) are defined to compute outflow q(z,d,k) and inflow p(z,d,k) by employing the
transport-flow vector. In constraint (1.7), the first segment ensures that vehicles leave the network
once they reach their respective destination (only for CAVs). Constraint (1.9) defines the sinks
for HDVs according to the (predefined) exiting turning rates e(z) at each link. Constraint (1.10)
describes that queue length is shared among the vehicles, i.e., CAVs heading to their desired desti-
nation and HDVs have a certain limit xmax(z) (storage capacity) for a particular link. Constraint
(1.11) imposes the initial condition to the optimization problem. Finally, constraint (1.12), defines
the rule for varying saturation rates as a function of the queue length and headways of CAVs and
HDVs.

Since we assume that saturation flow rates, s(z,k), are dynamic, varying in space, i.e., by link,
and in time, we define that the saturation flow rate can be represented by the inverse summation
of average discharging headways (Urbanik et al., 2015), as:

s =
1∑N

i=1 hi

, (2)

where, hi denotes the time-headway of the ith vehicle and N is the total number of vehicles in a link.
We further assume that CAVs can maintain shorter time headways and can platoon behind any
vehicle, as sketched in Figure 1. Assume that hCAV and hHDV denote the time headways of CAVs
and HDVs respectively, thus by employing the mixed traffic autonomy function from (Roncoli,
2019; Lazar et al., 2020), we obtain

s =
1

Θ hCAV + (1−Θ)hHDV
, (3)
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where Θ defines the autonomy level of the link or road segment defined as

Θ =

∑
CAV,HDV X∑

CAV X +
∑

HDV X
, (4)

where X is the queue length vector of a link that contains CAVs and HDVs vehicles combined.
Thus, by substituting (4) in (3), we obtain constraint (1.13).

2.4 Implementation
In order to compute the optimal control defined by the traffic timing and system optimal routes, we
solve optimization problem (1), assuming that the availability of the initial states (queue lengths),
demand vector for CAVs and HDVs, and (constant) turning rates for routing and exiting the
network of HDVs; the latter can be calculated via an estimation method (Tettamanti, Varga,
Kulcsár, & Bokor, 2008) or using online loop detectors (Qi, Dai, Tang, & Hu, 2020). Furthermore,
we assume the routing information of CAVs is instructed to each vehicle connected to the system
via V2I urban-infrastructure controller.

To solve the non-convex QP problem, we devise a heuristc algorithm based on an iterative
procedure to derive the optimal solution for the problem of (1) while varying the saturation rate
(as a parameter) outside the framework of optimization as described in Algorithm 1. Note that
this fixed point iteration method recasts the non-convex nature of (1) to convex.

Algorithm 1 Fixed-Point Iteration for Saturation-Flow Rate Update
1: Input: θ(z,k) =

∑
d∈D̄ b(z,d,k)/

(∑
d∈D b(z,d,k) + ε

)
2: Initialize: s0(z,k) = 1/

(
hCAV θ(z,k) + hHDV (1− θ(z,k))

)
3: i← 0
4: while i ≤ Max Iterations do
5: Feed the sopt.(z,k) = si(z,k)
6: Solve the Optimization Problem (1)* with sopt.(z,k)
7: Extract the Optimal Values for x(z,d,k)

8: Update the Saturation Rate Values:
si+1(z,k) =

∑
d∈D x(z,d,k)/

(
hCAV

∑
d∈D̄ x(z,d,k) + hHDV x(z,0,k)

)
9: i← i+ 1

10: if
∣∣si(z,k) − si+1(z,k)

∣∣ ≤ σ then
11: Stop
12: end if
13: end while
14: Output: Optimal Solution
*The saturation flow rate in (1) is considered as a parameter in the implementation of the fixed-point
iterative algorithm rather than optimizer variable

3 NUMERICAL EXPERIMENTS
We consider a network with |Z| = 40 links and |J | = 16 intersections, with eight entry and eight
exit links along with 24 interlinks as shown in Figure 2. All links have each phase of green time
which is distributed categorically as per their orientation, i.e., vertically and horizontally. The
optimization horizon is K = 40 steps, and C = 90 s, implying a total simulation time of 1 hour.
Furthermore, we define hCAV = 1/4000 veh/h = 0.9 s, hHDV = 1/2000 veh/h = 1.8 s, L(j) = 5 s
for all j ∈ J . Also, we assume that gmin(j,i) = 15 s for j ∈ J, i ∈ F(j) and xmax(z) = 100 veh for
all z ∈ Z. The traffic demand is illustrated in Figure 3, along with their Orgin-Destination (OD)
pairs for CAVs, while HDVs with Origin (O) links.

The proposed strategy is implemented in Python, while AMPL (Fourer, Gay, & Kernighan,
1987) instances are employed for building the optimization problem; the selected solver is Gurobi
(Gurobi Optimization, LLC, 2023).

Firstly, we present in Figure (4) the cumulative sum of CAVs and HDVs at the network level.
It is shown that all CAVs reach their respective destinations, while the HDVs are all leaving the
network according to the assigned exit-turning rates.
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Figure 2: The designed grid network for testing the proposed approach.

Figure 3: The demand matrix over the selected timespan.

Secondly, queue length along with saturation flow rate is illustrated in Figure 5, where one can
see that the queue length of CAVs and HDVs dictates the dynamic nature of the saturation rate,
which is changes based on the headways of CAVs and HDVs.

Finally, the trajectory of the controller green times for intersections j = 2, 10, 11, and 13 are
outlined in Figure 6, where one can observe that the signal time in the network changes as per
the horizontal and vertical admitting flow to each link, i.e. the outflow from each subsequent
links connected to a particular node will effect the inflow of the next link which in turn affect the
optimizer decision for green time allocation. Note that, the changes in the controlled green times
can be further smoothed by adjusting (tuning) the weights of the objective in (1).

4 CONCLUSIONS
We proposed a novel approach to optimize traffic flow in mixed-autonomy environments by ex-
ploiting the signal controller timing for CAVs and HDVs at the intersections and supplementing
the CAVs system routing, while we also account for the effect of mixed autonomy on the saturation
flow rate. We incorporated the multi-destination-based store-and-forward modelling of CAVs with
a single-commodity component, thus accounting for behaviors of both vehicle types. The proposed
model was integrated in an optimization problem, solved via a fixed-point iterative algorithm that
solves at each time a simpler quadratic convex problem. The results show preliminary results
obtained via the presented framework. For future work, we will improve the optimization method,
develop alternate algorithms, compare the solution with that obtained by a nonlinear solver, and
define a more realistic case study.
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(a)

(B)

Figure 4: The network analysis by an illustration of the network-level cumulative inflow and outflow
of CAVs (a) and HDVs (b) .
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(a)

(b)

Figure 5: The queue lengths (i.e., number of vehicles) of CAVs and HDVs over the time horizon
(a), and the dynamic saturation flow rate (in green) for the same link (b).

Figure 6: The signal controller timing for selected intersections. Both phases of the traffic signal
allocation, i = 1 and i = 2 are shown in the figures.
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