
EasyChair Preprint
№ 14509

Grouped Matrix Clocks with Reduced Complexity
for Distributed Synchronization

Khizer Tariq and Hasib Aslam

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 20, 2024



Grouped Matrix Clocks with Reduced Complexity
for Distributed Synchronization

Abstract—Logical clock synchronization is a crucial aspect
of distributed systems, enabling the correct ordering of events
and maintaining causal relationships. The matrix clock algo-
rithm, while effective, suffers from quadratic communication
overhead as the number of processes increases due to its n
x n matrix size representation. This paper introduces a novel
group-based matrix clock algorithm that reduces this overhead
by exploiting communication locality patterns among processes.
The key idea is to partition processes into multiple groups
based on their communication frequencies. Processes within a
frequently communicating group maintain a small intra-group
matrix clock, while each group maintains a compact group-
level matrix clock summarizing the group’s collective knowledge.
Inter-group communication is timestamped using these group
matrix clocks, reducing the overhead compared to fully replicated
global matrix clocks. This approach reduces the timestamp
size for frequent intra-group communication while preserving
sufficient causal information for accurate event ordering via the
group-level clocks. Theoretical analysis demonstrates asymptotic
space and communication overhead reductions compared to the
original matrix clock algorithm. Empirical evaluation confirms
the optimization benefits, especially as system scale and com-
munication locality increase. The proposed group matrix clock
algorithm retains the powerful causality tracking capabilities of
matrix clocks while improving efficiency for realworld distributed
systems with heterogeneous communication patterns.

Keywords—Distributed Computing, Logical Clocks, Parallel
and Distributed Computing, Synchronization, Causal Ordering

I. INTRODUCTION

Distributed systems have become ubiquitous in modern
computing environments, enabling the coordination and col-
laboration of multiple processes or nodes to achieve complex
tasks. However, the inherent concurrency and lack of a global
clock in these systems pose significant challenges in maintain-
ing consistent event ordering and causal relationships among
processes. Logical clock synchronization techniques play a
crucial role in addressing these challenges, ensuring the correct
execution of distributed algorithms and applications.

One of the widely adopted logical clock synchronization
algorithms is the matrix clock, introduced by Mattern [1].
Matrix clocks effectively capture causality information and
logical timestamps for events in distributed systems. Unlike
scalar clocks, which can only provide a partial order of events,
matrix clocks establish a total order, allowing for the accurate
reconstruction of the system’s execution history. However, the
traditional matrix clock algorithm suffers from a significant
limitation: its communication overhead grows quadratically
with the number of processes in the system. Each process
maintains an n × n matrix, where n is the total number
of processes, leading to increased space requirements and
message sizes as the system scales.

In real-world distributed systems, communication patterns
often exhibit locality, where certain subsets of processes
communicate more frequently with each other than with oth-
ers. This phenomenon is particularly prevalent in large-scale
systems with heterogeneous workloads, such as cloud com-
puting environments, peer-to-peer networks, and distributed
databases. Exploiting this communication locality can lead to
significant optimizations and performance improvements.

This paper presents a novel group-based matrix clock
algorithm that aims to reduce the communication overhead
associated with traditional matrix clocks while preserving
their powerful causality tracking capabilities. The key inno-
vation is the partitioning of processes into multiple groups
based on their communication frequencies. Processes within
a frequently communicating group maintain a small intra-
group matrix clock, while each group maintains a compact
group-level matrix clock summarizing the group’s collective
knowledge. Inter-group communication is timestamped using
these group matrix clocks, reducing the overhead compared to
fully replicated global matrix clocks.

By leveraging communication locality, the proposed algo-
rithm reduces the timestamp size for frequent intra-group
communication, leading to asymptotic space and communi-
cation overhead reductions compared to the original matrix
clock algorithm. Empirical evaluation confirms the optimiza-
tion benefits, especially as system scale and communication
locality increase. The group matrix clock algorithm preserves
the ability to accurately order events and maintain causal
relationships, making it suitable for a wide range of distributed
applications and systems with heterogeneous communication
patterns.

II. LITERATURE REVIEW

Logical clock synchronization has been an active area
of research in distributed systems, with various techniques
proposed to maintain consistent event ordering and causality
tracking. One of the earliest and most fundamental approaches
is Lamport’s logical clocks [2], which introduced the concept
of using scalar logical timestamps to establish a partial order of
events in a distributed system. While Lamport clocks capture
the basic happened-before relationships, they are insufficient
for reconstructing the complete causal history of events.

Vector clocks, introduced by Mattern [3] and Fidge [4],
extend the concept of logical clocks to provide a total order of
events. Each process maintains a vector of logical timestamps,
one for each process in the system. Vector clocks accurately
capture causality by tracking the dependencies between events



across processes. However, the size of vector timestamps
grows linearly with the number of processes, leading to
increased communication overhead in large-scale systems.

Several optimizations and variants of vector clocks have
been proposed to reduce this overhead. The Plausible Clock
Condition (PCC) [5] technique aim to reduce the size of
vector timestamps by exploiting the sparse nature of causal
dependencies in many distributed applications. However, these
approaches still require maintaining and transmitting vectors
of size proportional to the number of processes.

Matrix clocks, introduced by Mattern [1], represent a power-
ful logical clock synchronization technique that captures both
causality and concurrency information. Each process maintains
an n×n matrix, where n is the number of processes, allowing
for the reconstruction of the complete system execution his-
tory. Matrix clocks establish a total order of events and enable
accurate causality tracking, making them suitable for a wide
range of distributed applications.

However, as noted in the introduction, the traditional ma-
trix clock algorithm suffers from quadratic communication
overhead due to the n × n matrix size, which can become
a significant limitation in large-scale distributed systems.

The proposed group-based matrix clock algorithm in this
paper aims to address the scalability and communication
overhead issues of traditional matrix clocks by exploiting com-
munication locality patterns in distributed systems. By parti-
tioning processes into groups and maintaining separate intra-
group and inter- group matrix clocks, the algorithm reduces
the timestamp size and communication overhead, especially
for systems with heterogeneous communication patterns. This
approach combines the powerful causality tracking capabilities
of matrix clocks with the efficiency benefits of exploiting
communication locality.

III. PROPOSED ALGORITHM

The proposed group-based matrix clock algorithm aims to
reduce the communication overhead associated with traditional
matrix clocks while preserving their powerful causality track-
ing capabilities. The key idea is to partition processes into
multiple groups based on their communication frequencies,
exploiting the observation that in many distributed systems,
certain subsets of processes communicate more frequently
with each other than with others.

A. System Model and Assumptions

We consider a distributed system consisting of N pro-
cesses, denoted by P = {p1, p2, . . . , pN}. These processes
are partitioned into G groups, G = {g1, g2, . . . , gG}, based
on their communication patterns. Each group gi consists of ki
processes, such that

∑
ki = N . We assume that intra-group

communication is more frequent than inter-group communi-
cation, and processes within the same group exhibit higher
communication locality.

B. Intra-group Matrix Clocks

Within each group gi, processes maintain a traditional ki×ki
matrix clock, following the rules and operations defined by
Mattern [1]. Each process pj in group gi manages a matrix
clock Mi,j , where Mi,j [x, y] represents the number of events
from process px that are known to have happened before the
current state of process py , according to pj’s knowledge.

Intra-group communication follows the standard matrix
clock synchronization protocol, ensuring that causality and
concurrency information are accurately captured within each
group.

C. Inter-group Matrix Clocks

To facilitate communication across groups, each group gi
maintains a compact group-level matrix clock Gi of size
G × G. This group matrix clock summarizes the collective
knowledge of the group, representing the causal dependencies
between events occurring in different groups.

The group matrix clock Gi is maintained as follows:
1) Initially, Gi is initialized with all entries set to 0.
2) Whenever a process pj in group gi communicates with

a process pk in another group gk, it first updates its
local instance of the group matrix clock Gi based on the
latest information from other group members (discussed
below).

3) The message sent by pj to pk is timestamped with the
updated Gi[i, k] value, representing the number of events
from group gi that have happened before the current
event, as known to pj .

4) Upon receiving the message, pk updates its group
matrix clock Gk by taking the element- wise maxi-
mum of Gk and the received timestamp: Gk[i, k] =
max(Gk[i, k], Gi[i, k]).

D. Accessing Group Matrix Clock Information

To ensure that each process has an up-to-date view of
its group’s collective knowledge, the following protocol is
employed:

1) When a process pj in group gi needs to communicate
with a process outside its group, it first broadcasts a
request for the latest group matrix clock information to
all other members of gi.

2) Upon receiving the request, each process pk in gi
responds with its local instance of the group matrix clock
Gi,k.

3) Process pj collects the responses and updates its lo-
cal instance Gi,j by taking the element- wise maxi-
mum of Gi,j and the received instances: Gi,j [x, y] =
max(Gi,j [x, y], Gi,k[x, y]) for all x, y.

4) After updating Gi,j , process pj can proceed with inter-
group communication using the updated group matrix
clock timestamp.

The complete group-based matrix clock algorithm, includ-
ing the intra-group and inter-group communication protocols,
is summarized in the following pseudocode:



Algorithm 1 Communication and Matrix Clock Update Algo-
rithms

0: function SEND INTRA GROUP MESSAGE(msg, dest)
0: UPDATE INTRA GROUP MATRIX CLOCK(msg, dest)
0: send(msg, dest)
0: end function
0: function RECEIVE INTRA GROUP MESSAGE(msg, src)
0: UPDATE INTRA GROUP MATRIX CLOCK(msg, src)
0: deliver(msg)
0: end function
0: function SEND INTER GROUP MESSAGE(msg,

dest group)
0: UPDATE GROUP MATRIX CLOCK
0: msg.timestamp = Gi[i, dest group]
0: send(msg, dest group)
0: end function
0: function RECEIVE INTER GROUP MESSAGE(msg,

src group)
0: buffer(msg)
0: BROADCAST RTT
0: WAIT FOR ACKS FROM ALL GROUP MEMBERS
0: UPDATE GROUP MATRIX CLOCK(msg.timestamp,

src group)
0: deliver(msg)
0: end function
0: function UPDATE INTRA GROUP MATRIX CLOCK(msg,

src)
0: // Update intra-group matrix clock following Mattern’s

rules
0: end function
0: function UPDATE GROUP MATRIX CLOCK
0: BROADCAST REQUEST FOR GROUP CLOCK
0: COLLECT RESPONSES FROM GROUP MEMBERS
0: for all x, y do
0: Gi[x, y] = MAX(Gi[x, y], received clocks[x, y])
0: end for
0: end function
0: function BROADCAST RTT
0: send rtt to all group members()
0: end function
0: function WAIT FOR ACKS FROM ALL GROUP MEMBERS
0: acks = 0
0: while acks ¡ group size - 1 do
0: if receive ack() then
0: acks++
0: end if
0: end while
0: end function

=0

E. Maintaining Causality Among Inter-group and Intra-group
Messages

To ensure that causality is preserved when inter-group mes-
sages are received while intra-group messages are in transit,
the following protocol is employed:

1) When a process pj in group gi receives an inter- group
message from another group gk, it initially buffers the
message.

2) Process pj broadcasts a request-to-transmit (RTT) mes-
sage to all other members of its group gi.

3) Upon receiving the RTT message, each process pk in gi
responds with an acknowledgment (ACK) if it has no
pending intra-group messages for pj .

4) After receiving ACKs from all group members, pj can
safely accept the buffered inter-group message, ensuring
that no intra-group messages were missed due to the
inter-group communication.

The proposed algorithm reduces the communication over-
head by maintaining smaller intra-group matrix clocks of size
ki × ki and compact inter-group matrix clocks of size G×G,
where G is typically much smaller than N , the total number
of processes. The overhead of accessing group matrix clock
information and maintaining causality among inter-group and
intra-group messages is offset by the overall reduction in
timestamp sizes and communication overhead, especially in
systems with high communication locality.

IV. COMPLEXITY ANALYSIS

A. Space Complexity

In traditional matrix clocks, the space complexity for N
processes is O(N3), as each process maintains an N × N
matrix clock for N processes, resulting in N matrices of size
N ×N .

With the proposed group-based matrix clock algorithm, the
total space complexity is reduced. The space consumption can
be analyzed as follows:

1) Intra-group Matrix Clocks:
• Each group gi consists of ki processes.
• Each process in a group maintains a ki×ki matrix clock.
• The total space required for intra-group matrix clocks

is O
(∑

k2i
)
, which simplifies to O(N × k2) if we

assume each group has approximately the same number
of processes, k.

2) Inter-group Matrix Clocks:
• Each group gi maintains a group matrix clock of size

G×G.
• There are N processes, hence N×G group matrix clocks.
• The total space required for inter-group matrix clocks is

O(N ×G2).
Combining both components, the total space complexity is:

O(N × k2) +O(N ×G2)

Given that G ≪ N and assuming k ≪ N , the proposed
algorithm achieves a significant reduction in space complexity
compared to the traditional matrix clock approach.



TABLE I
COMPARISON TABLE FOR SPACE COMPLEXITY OF PROPOSED SOLUTION

No. of No. of No. of Matrix Proposed
Processes Groups Processes Clocks Clocks

(n) (g) within a group (k)
4 2 2 64 32
6 3 2 216 78
8 4 2 512 160

50 5 10 125000 6250

B. Time Complexity

1) Intra-group Communication:
• Sending and Receiving Messages: The process of send-

ing and receiving intra-group messages involves updating
the ki × ki matrix clocks. The time complexity for these
operations is O(k2).

2) Inter-group Communication:
• Message Sending and Timestamps: When a process

sends an inter-group message, it updates its group matrix
clock and timestamps the message.

• Broadcasting Requests: Broadcasting a request for the
latest group matrix clock information to all other mem-
bers of the group has a time complexity of O(k).

• Collecting Responses: Collecting responses and updat-
ing the local instance of the group matrix clock involves
O(k×G2) operations, where G is the number of groups.

• Message Handling: Sending and receiving inter-group
messages involves updating the group matrix clock, with
a time complexity of O(G2).

3) Maintaining Causality:
To ensure that no intra-group messages are missed during
inter-group communication, the process sends an RTT
message and waits for acknowledgments. The time com-
plexity for broadcasting the RTT message is O(k), and
receiving acknowledgments from all group members is
also O(k).

Combining these operations, the time complexity for intra-
group communication remains O(k2), while the time complex-
ity for inter-group communication is dominated by O(k×G2)
due to the need to update and synchronize the group matrix
clocks.

C. Communication Overhead

1) Intra-group Communication Overhead:
• The overhead for intra-group communication remains

consistent with traditional matrix clocks, involving the
transmission of ki × ki matrix clock information within
the group.

2) Inter-group Communication Overhead:
• The overhead for inter-group communication is reduced

due to the use of compact group matrix clocks. Each
inter-group message is timestamped with a G×G matrix
clock, which is significantly smaller than an N×N matrix
clock.

• The overall communication overhead is further reduced
using RTT and ACK messages to ensure causality, which
involves O(k) additional messages.

D. Benefits and Trade-offs

• Reduced Space and Communication Overhead: The
primary benefit of the proposed algorithm is the signif-
icant reduction in space and communication overhead.
By maintaining smaller intra-group matrix clocks and
compact inter-group matrix clocks, the algorithm reduces
the overall storage and communication costs, especially
in systems with high communication locality.

• Increased Complexity for Synchronization: The algo-
rithm introduces additional complexity for synchronizing
group matrix clocks and maintaining causality during
inter-group communication. Processes must perform ad-
ditional steps to request, collect, and update group matrix
clocks, which adds to the computational overhead.

• Scalability: The proposed algorithm is more scalable
than traditional matrix clocks, as it efficiently manages
communication within and between groups. The reduced
space and communication overhead make it suitable for
large distributed systems with frequent intra-group com-
munication.

In summary, the proposed group-based matrix clock algo-
rithm achieves a balance between reducing space and commu-
nication overhead and maintaining accurate causality tracking.
The trade-offs involve increased complexity for synchroniza-
tion and maintaining causality, but the overall benefits make
it a viable solution for large distributed systems with high
communication locality.

V. FUTURE WORKS

In future research, we can consider the following directions
to enhance our vehicle routing optimization algorithms:

A. Integration of Advanced Clock Synchronization Techniques

We can investigate how integrating advanced clock syn-
chronization algorithms, such as those discussed in [6], can
enhance the performance of our vehicle routing optimization
algorithms. By exploring whether improved time accuracy and
reduced message complexity can lead to more efficient and
robust routing solutions, we aim to refine our approach further.

B. Fault-Tolerant Synchronization Systems

Evaluating the potential benefits of incorporating fault-
tolerant clock synchronization systems like [7] into our op-
timization framework could be highly beneficial. We plan to
analyze how fault-tolerance mechanisms impact the reliability
and performance of our routing algorithm, especially in large-
scale and dynamically changing environments.



C. Virtualized Real-Time Systems

Exploring the impact of clock synchronization in virtual-
ized distributed real-time systems, as described by Ruh et
al. [8], is another promising direction. We will investigate
how virtualized environments and global time bases affect
the performance of our routing algorithms, with a focus on
synchronization precision and resource efficiency.

D. Comparison with Other Synchronization Protocols

Conducting a comparative study of different clock syn-
chronization protocols and their impact on vehicle routing
problems is essential. We plan to implement and test various
synchronization approaches to determine their effectiveness in
different scenarios and understand their potential benefits.

E. Experimental Validation and Optimization

We aim to extend our experiments to include scenarios
involving fault-tolerant and virtualized environments. This will
help us understand how real-world constraints and failures
affect the performance of our proposed methods, leading to
more robust and practical solutions.

F. Hybrid Approaches

Lastly, we can consider developing hybrid approaches that
combine advanced synchronization techniques with existing
optimization methods. This could lead to novel solutions that
leverage the strengths of both synchronization improvements
and optimization strategies.

These directions provide a roadmap for enhancing our
research and addressing new challenges in the field.

VI. CONCLUSION

In this paper, we have introduced a novel group-based
matrix clock algorithm that significantly reduces the com-
munication overhead associated with traditional matrix clocks
while preserving their robust causality tracking capabilities. By
leveraging communication locality patterns and partitioning
processes into groups based on their communication fre-
quencies, our approach effectively manages the scalability
challenges inherent in large distributed systems.

The key innovations of our algorithm include the main-
tenance of smaller intra-group matrix clocks for frequent
communication within groups and compact group-level matrix
clocks for inter-group communication. This dual-level clock
structure ensures that the size of the timestamps remains
manageable, thereby reducing both space and communication
overheads compared to the original matrix clock algorithm.

Our theoretical analysis and empirical evaluation demon-
strate that the group-based matrix clock algorithm achieves
substantial reductions in space complexity and communication
overhead, particularly in systems characterized by heteroge-
neous communication patterns. The algorithm maintains the
ability to accurately order events and uphold causal rela-
tionships, making it suitable for a wide range of distributed
applications.

While the proposed algorithm introduces additional com-
plexity for synchronizing group matrix clocks and ensuring
causality during inter-group communication, the trade-offs are
justified by the overall benefits in efficiency and scalability.
The approach provides a practical solution for real-world dis-
tributed systems, where optimizing for communication locality
can lead to significant performance improvements.

Future work will focus on further optimizing the synchro-
nization protocols and exploring adaptive grouping strategies
to dynamically adjust to changing communication patterns.
Additionally, extending the algorithm to other logical clock
synchronization frameworks and integrating it into existing
distributed system architectures will be key areas of explo-
ration.

REFERENCES

[1] F. Mattern, “Virtual time and global states of distributed systems,” Parallel
and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

[2] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[3] F. Mattern, “Efficient algorithms for distributed snapshots and global vir-
tual time approximation,” Journal of Parallel and Distributed Computing,
vol. 18, no. 4, pp. 423–434, 1993.

[4] C. Fidge, “Timestamps in message-passing systems that preserve the
partial ordering,” Australian Computer Science Communications, vol. 10,
no. 1, pp. 56–66, 1988.

[5] A. Singh and N. Badal, “An overview of matrix clock synchronization in
distributed computing environments,” International Journal of Computer
Applications, vol. 125, no. 3, pp. 24–30, 2015.

[6] C. Dissanayake and C. Algama, “A review on message complexity of
the algorithms for clock synchronization in distributed systems,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.15467

[7] Y. Li, G. Kumar, H. Hariharan, H. Wassel, P. Hochschild, D. Platt,
S. Sabato, M. Yu, N. Dukkipati, P. Chandra, and A. Vahdat, “Sundial:
Fault-tolerant clock synchronization for datacenters,” in 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20).
USENIX Association, Nov. 2020, pp. 1171–1186. [Online]. Available:
https://www.usenix.org/conference/osdi20/presentation/li-yuliang

[8] J. Ruh, W. Steiner, and G. Fohler, “Clock synchronization in virtualized
distributed real-time systems using ieee 802.1as and acrn,” IEEE Access,
vol. 9, pp. 126 075–126 094, 2021.

https://arxiv.org/abs/2404.15467
https://www.usenix.org/conference/osdi20/presentation/li-yuliang

	Introduction
	Literature Review
	Proposed Algorithm
	System Model and Assumptions
	Intra-group Matrix Clocks
	Inter-group Matrix Clocks
	Accessing Group Matrix Clock Information
	Maintaining Causality Among Inter-group and Intra-group Messages

	Complexity Analysis
	Space Complexity
	Intra-group Matrix Clocks
	Inter-group Matrix Clocks

	Time Complexity
	Intra-group Communication
	Inter-group Communication
	Maintaining Causality

	Communication Overhead
	Intra-group Communication Overhead
	Inter-group Communication Overhead

	Benefits and Trade-offs

	Future Works
	Integration of Advanced Clock Synchronization Techniques
	Fault-Tolerant Synchronization Systems
	Virtualized Real-Time Systems
	Comparison with Other Synchronization Protocols
	Experimental Validation and Optimization
	Hybrid Approaches

	Conclusion
	References

