
EasyChair Preprint
№ 15459

RouterORAM: an O(1)-Latency and Client-Work
ORAM

Sumit Paul and David Knox

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 24, 2024



RouterORAM: An 𝑶(𝟏)-latency and client-work ORAM

Sumit Kumar Paul[0000−0002−6232−8090] and D.A.Knox[0009−0007−6138−2283]
University of Ottawa, Ottawa, Canada {Sumit.Paul,dknox}@uottawa.ca

Abstract. An adversary can learn a lot only by studying data storage access pat-
terns, even if the actual data being accessed remains encrypted. Oblivious RAM
(ORAM) is a cryptographic primitive that hides access patterns. However, to
achieve this privacy, the client has to perform a significant amount of additional
work per access, which not only causes very high access latency but is also of-
ten impractical for resource-constrained clients. As a result, ORAMs are still not
usable in most of the scenarios. This paper proposes RouterORAM. The central
idea of it is to harness the server’s otherwise unutilized computation power to
steer the deliberately misplaced blocks to their destined locations. To the best of
our knowledge, RouterORAM is the first ORAM to drag both the access latency
and the client’s burden together down to the asymptotic minimum level, 𝑂(1). It
exploits the properties of homomorphic encryption to achieve the desired level
of server obliviousness, and its privacy is proven with rigorous theoretical analy-
sis. The long-term behavior of RouterORAM is captured with simulation, which
vouches for its suitability for practical usage scenarios.
Keywords: ORAM · Latency · Client-work · Homomorphic Encryption

1 Introduction
Increasingly, users are storing and accessing larger amounts of personal data from cloud
storage [20]. However, even if the data remains encrypted, a server can learn a lot of
private information just by monitoring access patterns [6]. For instance, during a file
access, a user/client requests the server to send the encrypted content of the file (or a part
of it). Hence, the server learns which file (or which part of the file) is being accessed. The
server can detect a file write/update operation by observing any change in the ciphertext
content of the accessed location.

Golreich and Ostrovsky first analyzed this problem and proposed the Oblivious RAM
(ORAM) algorithm [2]. In an ORAM, the client stores data as encrypted blocks in ran-
dom locations on a remote server, keeps track of those locations, and later retrieves the
required blocks from those random-looking stored locations and decrypts them locally.

With the ORAM method, additional work, re-encryption and re-shuffling of some
part of the server content, is required for each distinct access. These additional works not
only make reading and writing indistinguishable, but they also hide the access frequency
of the blocks. However, this overhead increases access latency significantly. Moreover,
for the sake of privacy, all these additional tasks are required to be done by the client,
which is often impractical for resource-constrained client devices.

Several ORAM schemes have been proposed over the last thirty years, with the aim
of minimizing the overhead. However, there is a limitation. The amount of overhead has



2 Paul and Knox

been proven to be at least 𝑂(𝑙𝑜𝑔𝑁) per access [2], where 𝑁 is the number of outsourced
blocks. This means that, with the trend of increasing size of remote storage, ORAM will
become even less practical.

The proof covers the most general use case scenario, where the client can read or
write any item, in any order, at any time. For example, the client might remain active
and access the remote storage around the clock, and, out of 𝑁-outsourced blocks, might
only write to a particular block every time.

In reality, the client’s access patterns are less extreme and occur in bursts rather than
being continuous accesses [14]. Moreover, reads occur more often than writes [12, 13].
Therefore, rather than attempting to protect all possible access patterns (already proven
to have Ω(𝑙𝑜𝑔𝑁) overhead), we restrict the problem space to protecting these common
access patterns and can then reduce latency and client’s work significantly.

We made some interesting observations. In any ORAM scheme, the client is required
to store a large number of encrypted dummy blocks in the server for the purpose of ob-
fuscation. However, after encryption, dummy and real blocks become indistinguishable.
So, we might take some advantage by storing encryption of the replicas of real blocks
instead of storing the encryption of dummies. Another observation is that there is an
implicit assumption that the server can only read and write blocks whenever the client
instructs and is idle otherwise. However, since the server has processing capability, the-
oretically, it could perform some useful work in that idle time.

By considering these observations and targeting the specified common access pat-
terns, we propose RouterORAM, which protects the users’ access pattern. The novel
aspect of RouterORAM is: to the best of our knowledge, it is the first ORAM that can
protect access pattern privacy with only 𝑂(1)-latency and 𝑂(1)-client work. The name
RouterORAM comes from the idea of utilizing the server’s computational capability to
obliviously route the deliberately misplaced blocks to their destined locations. Addition-
ally, RouterORAM stores multiple replicas of each blocks on the server. So, if the client
requests a block that has not yet reached its destination, the server can return a replica.

The organization of this paper is as follows: We discuss the related work in Section 2.
In Section 3, we describe RouterORAM in detail. In the subsequent section, we conduct a
theoretical analysis and prove its claimed privacy. Section 5 shows the simulation results.
In the next section, we discuss its theoretical contributions and compare RouterORAM
with other schemes. Finally, in section 7, we conclude this paper.
2 Related work
Goldreich and Ostrovsky first envisioned the concerns of privacy leakage from access
patterns and proposed hierarchical ORAM [2], which allows a client to hide its access
pattern to the remote storage server. In their seminal paper, the authors not only proposed
hierarchical ORAM, but also proved that Ω(𝑙𝑜𝑔𝑁) overhead is essential to achieve per-
fect privacy. However, their own construction’s overhead was 𝑂(𝑙𝑜𝑔𝑁3) per access.

As a natural consequence, the research community started finding an ORAM scheme
that could meet the theoretical limit. PathORAM [3], having 𝑂(𝑙𝑜𝑔𝑁2) overhead, is
one of the most popular breakthroughs in this direction [7]. In PathORAM, the server
stores the outsourced 𝑁 data blocks in encrypted format in a binary tree having 𝑙𝑜𝑔𝑁
levels. The client maps each block to a random path, which means the block resides
somewhere on that path. To access a block, the client looks at its local position map



RouterORAM: An 𝑂(1)-latency and client-work ORAM 3

to find the mapped path. Then reads all the blocks on that path. The requested block is
then remapped to a new random path and placed somewhere in that remapped path or
in the client’s local storage, called stash. Additionally, the client tries to push the newly
remapped block towards the leaf of the remapped path whenever possible.

Finally, Asharov et. al. constructed the optimal 𝑂(𝑙𝑜𝑔𝑁)-ORAM, OptRAMa [4].
However, this theoretical minimal 𝑂(𝑙𝑜𝑔𝑁) overhead is also impractical for medium-
sized storage accesses. Generally, 𝑂(𝑙𝑜𝑔𝑁)-overhead does not only mean the client has
to incur 𝑂(𝑙𝑜𝑔𝑁)× computation; it also means the client has to incur 𝑂(𝑙𝑜𝑔𝑁)× band-
width while accessing each block. Ren et al. proposed Ring ORAM [5], in which they
showed that it is possible to reduce the bandwidth blowup from 𝑂(𝑙𝑜𝑔𝑁)× to 𝑂(1)× by
keeping some metadata in the server along with the outsourced data. Also, they used
the XOR-trick, in which the server XORs multiple encrypted blocks together and sends a
single compressed response to the client. However, unlike the bandwidth reduction, it is
not possible to reduce the computation overhead of an ORAM scheme below 𝑂(𝑙𝑜𝑔𝑁)
due to its theoretical bound, at least when both read and write operations are supported.

Roche et al. proposed a write-only ORAM, WoORAM [8], which surprisingly has
only 𝑂(1)-overhead. However, having no read capability makes it less useful as, in most
situations, the client outsources some data to remote storage with the intention of access-
ing (reading) it later. Tople et al. proposed PRO-ORAM [9], a read-only ORAM having
𝑂(1) overhead. It uses a trusted execution environment on the server side which launches
√

𝑁 threads to shuffle the entire storage in 𝑂(1) time after each access. However, if 𝑁
is not relatively small, launching √

𝑁 treads is not practical, even for a powerful server.
Reducing latency might be possible if the shuffling can be broken down into online

and offline phases. The online phase occurs when the client accesses the remote storage
for read/write. Some bare minimum tasks must be done during this phase; it determines
the client-observed access latency. The offline phase can be postponed to a less busy pe-
riod when the client and server jointly perform the remaining shuffling tasks. Stefanov
and Shi proposed ObliviStore [10], which requires only a constant amount of reshuffling
work in its online phase, resulting in an 𝑂(1)-latency ORAM. Dautrich et al. extended
it to cope with the client’s bursty access patterns and proposed Burst ORAM [11]. Burst
ORAM does not perform any reshuffling work at all during the online phase, so it be-
comes even faster. However, here, ultimately, in some idle period, the client has to per-
form all the accumulated pending tasks to keep the ORAM in a usable state. In fact, if
the burst size is too large, the client might have to download the entire database locally
and perform 𝑂(𝑁) of work, which might be too much for its idle period.

In the majority of the situations, the remote server is treated only as a storage device,
having no processing capability. On client’s instruction, it can only read and write from
certain locations. In reality, the remote server is independently capable of performing
some useful work. So, theoretically, the client must be able to outsource some part of the
reshuffling task to the server. The only challenge is, how it can be done without leaking
any private information. If the client stores the data in the remote server after encrypting
with fully homomorphic encryption (FHE), then theoretically, it is possible for the server
to perform any computation on that, which might help the client to outsource some part
of the reshuffling task to the server. Apon et. al. analyzed this idea and formalized the
notion of Verifiable Oblivious Storage [15].



4 Paul and Knox

Devadas et al. applied this idea and proposed a PathORAM-based construction,
Onion ORAM [16]. Additionally, in Onion ORAM the bandwidth is reduced by treating
each path of the server tree as a remote database and fetching the required block from
that path by performing PIR. After accessing each block, it is remapped to a new ran-
dom path but placed in the root. When the root is about to become full, the client and
server collaborate and evict the old blocks from it to make space for newer ones. During
the eviction phase, instead of downloading the encrypted data and locally performing
reshuffling, the client only downloads some small metadata, and instructs the server
about how to do the reshuffling. The server performs the homomorphic evaluation over
the server data as per the client’s instruction which results the intended reshuffling.

Subsequently, Chen et al. improved Onion ORAM and proposed Onion Ring ORAM
[17]. They showed how the homomorphic permutation can be done more efficiently and
how by performing homomorphic expansion on the server side, the bandwidth require-
ment can be reduced even more. Not only that, they showed that FHE-based ORAM
schemes are no longer theoretical possibilities by implementing their construction with
the currently available FHE building blocks like 𝖼𝖬𝖴𝖷-gate. However, the computation
done by the client, especially during the offline eviction phase, is still quite heavy.

Recently Cong et al. proposed Panacea [18], another FHE-based ORAM scheme. It
does not require any involvement of the client during the offline phase at all and achieves
𝑂(1)-client work per access. However, the access latency is high in this case. Naively,
in Panacea, the server is required to perform 𝑂(𝑁) amount of computation per query.
However, if only 1.5× bandwidth and 3× expansion in server storage are sacrificed,
then the concept of probabilistic batch coding can be applied. In that case, instead of
responding to queries individually, the server can process queries in a batch of size 𝑘,
bringing the amortized computation cost per query down to 𝑂(𝑁∕𝑘).
3 RouterORAM Protocol
In this section, we first give an informal overview of the protocol. Then, we describe the
details of the outsourced data and required storage. Finally, we discuss all the parts of
our protocol in detail and how the client can access the remote storage whilst hiding the
access pattern.
3.1 Overview of RouterORAM
RouterORAM is a PathORAM [3]-based construction; the server stores the outsourced
blocks in a binary tree structure. After accessing a block, the client remaps that block to a
new random leaf. However, to confuse the server, the client next deliberately "misplaces"
the block on the server (i.e. places the block in a different and unrelated random position
from the newly remapped leaf).

The server always runs a background routing process, ensuring that all of the mis-
placed blocks eventually reach their remapped location. To facilitate routing, the des-
tination location (i.e. the remapped leaf) is specified in the block metadata. The server
utilizes that information to route the block to its proper destination. Routing is done by
leveraging the properties of homomorphic encryption, and the server learns nothing.

In RouterORAM, only a constant amount of work is required during each block ac-
cess. Indeed, only two constant-size buckets need to be touched1 at all on the server.

1 In ORAM context, touching means replacing the existing ciphertext with a new ciphertext.



RouterORAM: An 𝑂(1)-latency and client-work ORAM 5

Beyond this 𝑂(1)-work, no other work is required from the client or server during each
access. As a result, RouterORAM achieves 𝑂(1)-latency. However, the server’s routing
work does not disappear. RouterORAM allows the server to perform that work at more
convenient times, with better distribution over time, which has advantages in the com-
mon case where servers have both busy and idle periods.

In RouterORAM, the client can store multiple replicas of each block in the server. In
this way, some replicas of a block may be present in their mapped locations while others
are in transit. As long as at least one replica is at rest, the content of the block can be
accessed. In addition to reading and writing a block, RouterORAM offers a third feature:
controlling the number of replicas. So, by dynamically adjusting the number of replicas
of the blocks according to their anticipated access frequencies, the client can effectively
mask the time the server requires to complete the routing.

We use some notations in our paper, which are summarized in Table:1.
Table 1. Notations

Notation Explanation
𝑁 Total number of distinct outsourced blocks, same as the number of leaves.
𝐿 Height of the binary tree (⌊𝑙𝑜𝑔𝑁⌋ + 1).
𝑎 Identifier of a block, 𝑎 ∈ [𝑁].
𝔻(𝑎) Data of the block, identified by 𝑎 (or block 𝑎).
#(𝑎) Number of replicas of block 𝑎, stored in the server.
𝑍 Number of slots in a bucket. Each slot can hold an encrypted block.
𝛽𝑏 The bucket having label 𝑏, where 𝑏 ∈ℕ [1, 2𝐿−1].
𝛽𝑏[𝑖] Content of the 𝑖𝑡ℎ slot of 𝛽𝑏.
(⋅) Ciphertext of (⋅) generated under the fully homomorphic encryption, 𝖥𝖧𝖤.
𝖾�̂�,�̌� Edge connecting the upper layer bucket 𝛽�̂� with its child 𝛽�̌�.
𝖻𝗅𝗄.𝗆.𝖺 Block metadata part storing the identifier of the block, 𝖻𝗅𝗄.𝗆.𝖺 ∈ [𝑁].
𝖻𝗅𝗄.𝗆.𝗑 Block metadata part storing the mapped leaf label, 𝖻𝗅𝗄.𝗆.𝗑 ∈ℕ [2𝐿−1, 2𝐿 − 1].
⟨𝑏1, .., 𝑏#(𝑎)⟩ ∶=
𝗉𝗈𝗌[𝖺]

The content of the client-local position map corresponding to the block 𝑎. It is
a list holding the details of all the replicas of the block 𝑎.

3.2 Client storage and ORAM initialization
The client is only required to store and maintain the position map, 𝗉𝗈𝗌[], which is an
array indexed by the block identifier 𝑎 ∈ [𝑁]. It stores 𝑁-different lists. The client
maps different replicas of each block with independent locations in the server, and the
information about all the replicas of block 𝑎 is kept in the list stored in 𝗉𝗈𝗌[𝖺]. Because
of the deliberate misplacement, all the replicas may not be available immediately (the
background routing might take some time to place them) at their mapped leaf bucket.

Hence, the availability information also needs to be stored. Thus ∀𝑎∈[𝑁], 𝗉𝗈𝗌[𝖺] is
actually a list having the format: ⟨(𝑏1, 𝜏1), .., (𝑏#(𝑎), 𝜏#(𝑎))⟩, where each element is a tuple
consisting of the label of the mapped leaf bucket (𝑏𝑖) and the expected timestamp (𝜏𝑖),when the replica will be available at 𝛽𝑏𝑖 . The client always ensures that 𝗉𝗈𝗌[𝖺] always
remains sorted in ascending order of the availability timestamps of the replicas.
3.3 Outsourced data
Outsourced data is stored and accessed in terms of fixed-size blocks. Each block 𝖻𝗅𝗄,
has a data part (𝖻𝗅𝗄.𝖽) having size 𝐵-bits and a fixed size metadata part (𝖻𝗅𝗄.𝗆). The



6 Paul and Knox

client wants to outsource 𝑁 different blocks to the server. Each block is addressed by an
identifier denoted by 𝑎, where 𝑎 ∈ [𝑁] and it is also stored as a part of block metadata
(𝖻𝗅𝗄.𝗆.𝖺). The other part of the block metadata (𝖻𝗅𝗄.𝗆.𝗑) stores the block’s destination
(i.e., the currently mapped leaf). In RouterORAM, the client might store multiple replicas
of each individual block in the server. #(𝑎) denotes the number of replicas of block 𝑎,
and the client is allowed to control this number from time to time. Along with real
data blocks (and their replicas), some dummy blocks are also outsourced. The plain text
content of a dummy block is all zeros (i.e., 𝖻𝗅𝗄.𝗆.𝖺 = 𝖻𝗅𝗄.𝗆.𝗑 = 𝟢 and 𝖻𝗅𝗄.𝖽 = {𝟢}𝖡).
3.4 Server storage
The server arranges its storage as a full binary tree. Each node of the tree is a bucket
having a fixed number (𝑍) of slots. 𝓁 ∈ℕ [1, 𝐿] denotes the levels of the tree, where
the root has 𝓁 = 1 and all the leaves have 𝓁 = 𝐿. In each level 𝓁, the tree has 2𝓁−1
nodes/buckets. In RouterORAM, the number of leaf buckets is set to 𝑁 , which means,
𝐿 = ⌊𝑙𝑜𝑔𝑁⌋ + 1.2 Each individual bucket is labeled with 𝑏 ∈ℕ [1, 2𝐿 − 1]. The bucket
having label 𝑏 is denoted by 𝛽𝑏. The labeling is done in such a way that for bucket 𝛽𝑏,
𝛽2𝑏 is its left child, and 𝛽2𝑏+1 is its right child. The root bucket is labeled with 𝑏 = 1.

Each bucket-slot stores an encrypted real or dummy block. 𝛽𝖻[𝗂] represents the stored
ciphertext in 𝑖𝑡ℎ slot of 𝛽𝑏 and 𝛽𝖻[𝗂] represents corresponding plaintext. Leaf buckets
are special; they additionally store a list having 𝑍-elements, called the invalidation list
(𝛽𝖻.𝗂𝗅). Elements of 𝛽𝖻.𝗂𝗅 are either a valid block identifier ∈ [𝑁] or 0. Since everything is
encrypted under an IND-CPA secure fully homomorphic encryption scheme, 𝖥𝖧𝖤, real
blocks, their replicas, and dummy blocks are not distinguishable from each other.
ORAM initialization In this one-time activity, the client securely outsources real data
blocks (along with some replicas) and some dummy blocks to the remote server. Alg:1,
shows the details, where both the client and server participate jointly during the red-
dashed steps, and the rest of the steps are performed only by the client.

The client first chooses a randomly permuted order of to-be-outsourced blocks. Then,
it encrypts the content of each replica (i.e., data and metadata) with 𝖥𝖧𝖤 and stores that
in a uniform randomly chosen leaf bucket. Accordingly, the client updates its local po-
sition map. Since, during initialization, each replica is placed on the mapped leaf, they
are available immediately. Hence, the client specifies the current timestamp (𝜏𝑐𝑢𝑟) as the
expected availability for each replica. After completing real data outsourcing, the client
fills the remaining empty slots of the server with the encryption of dummy blocks.
3.5 ORAM Access
In RouterORAM, the client can interact with the server through only one basic build-
ing block, 𝖠𝖼𝖼𝖾𝗌𝗌(𝖺𝖱, 𝖺𝖨,𝔻(𝖺𝖨))-call (alg:2). During each 𝖠𝖼𝖼𝖾𝗌𝗌()-call, one block, 𝖺𝖱
is removed from the server tree, and another block, 𝖺𝖨 having the data content 𝔻(𝖺𝖨) is
inserted. By attentively choosing the parameter set of the 𝖠𝖼𝖼𝖾𝗌𝗌()-calls, the client can
achieve the high-level operations: reading a block, writing a block, and controlling the
number of replicas. RouterORAM ensures that individual 𝖠𝖼𝖼𝖾𝗌𝗌()-call leaks no privacy.
Thus, any higher-layer operations built upon it will also remain privacy-preserving.

2 Unless otherwise stated, in this paper 𝑙𝑜𝑔(⋅) denotes 𝑙𝑜𝑔2(⋅)



RouterORAM: An 𝑂(1)-latency and client-work ORAM 7

Algorithm 1 Init()
1: 𝜋 ← Choose a random permutation of [𝑁]
2: for 𝑎 ∈ 𝜋 do
3: for 𝑖 ∈ [#(𝑎)] do
4: 𝑏𝑖

$
← [2𝐿−1, 2𝐿 − 1]

5: 𝗉𝗈𝗌[𝖺] ∪ (𝑏𝑖, 𝜏𝑐𝑢𝑟)

6: Store {𝖺, 𝖻𝗂,𝔻(𝖺)} in 𝛽𝑏𝑖
7: for Remaining empty slots do
8: Store 𝖽𝗎𝗆𝗆𝗒 in an empty-slot of the

server tree

Algorithm 3 𝖱𝖾𝗆𝗈𝗏𝖾(𝖺𝖱)
1: 𝖽𝖺𝗍𝖺 ← ∅
2: if 𝖺𝖱 ≠ 0 then
3: (𝑏1, 𝜏1) ← 𝗉𝗈𝗉𝖥𝗋𝗈𝗇𝗍(𝗉𝗈𝗌[𝖺𝖱]), 𝑥 ← 𝑏1
4: Fetch 𝛽𝑥 from server
5: 𝛽𝑥 ← 𝖥𝖧𝖤.𝖽𝖾𝖼(𝛽𝗑)6: for 𝑖 ∈ [𝑍] do
7: if 𝛽𝗑[𝗂].𝖺 = 𝑎𝑅 then
8: 𝖽𝖺𝗍𝖺 ← 𝛽𝗑[𝗂].𝖽, 𝛽′

𝑥[𝑖] ← 𝖽𝗎𝗆𝗆𝗒
9: else

10: 𝛽′
𝑥[𝑖] ← 𝛽𝗑[𝗂] ⊳ i.e.,re-encrypt

11: if 𝖽𝖺𝗍𝖺 = ∅ then
12: 𝛽𝗑.𝗂𝗅 ← 𝛽𝗑.𝗂𝗅 ∪ {𝖺𝖱}
13: 𝛽′

𝗑.𝗂𝗅 ← 𝛽𝗑.𝗂𝗅

14: Replace 𝛽𝑥 with 𝛽′
𝑥 in server

15: else ⊳ It’s a dummy removal
16: 𝑥

$
← [2𝐿−1, 2𝐿 − 1]

17: Replace 𝛽𝑥 in the server, with its re-
encrypted version 𝛽′

𝑥

18: return 𝖽𝖺𝗍𝖺

Algorithm 2 𝖠𝖼𝖼𝖾𝗌𝗌(𝖺𝖱, 𝖺𝖨,𝔻(𝖺𝖨))
1: 𝖽𝖺𝗍𝖺 ← 𝖱𝖾𝗆𝗈𝗏𝖾(𝖺𝖱)
2: if Removal fails then
3: 𝖨𝗇𝗌𝖾𝗋𝗍(𝟢, ∗) ⊳ Dummy insertion to

maintain same touch pattern
4: 𝖠𝖼𝖼𝖾𝗌𝗌(𝖺𝖱, 𝖺𝖨,𝔻(𝖺𝖨)) ⊳ Try again
5: else ⊳ Successfully removed
6: if 𝖨𝗇𝗌𝖾𝗋𝗍(𝖺𝖨,𝔻(𝖺𝖨)) ≠ 𝗌𝗎𝖼𝖼𝖾𝗌𝗌 then
7: 𝖠𝖼𝖼𝖾𝗌𝗌(𝟢, 𝖺𝖨,𝔻(𝖺𝖨))⊳ Partial retry

with dummy removal
8: return 𝖽𝖺𝗍𝖺

Algorithm 4 𝖨𝗇𝗌𝖾𝗋𝗍(𝖺𝖨,𝔻(𝖺𝖨))
1: 𝗌𝗍 ← 𝖿𝖺𝗂𝗅𝗎𝗋𝖾

2: 𝑥
$
← [2𝐿−1, 2𝐿 − 1], 𝑤

$
← [1, 2𝐿−1 − 1]

3: if 𝖺𝖨 ≠ 0 then
4: Fetch 𝛽𝑤 from server
5: 𝛽𝗐 ← 𝖥𝖧𝖤.𝖽𝖾𝖼(𝛽𝗐)6: for 𝑖 ∈ [𝑍] do
7: if (𝛽𝗐[𝗂].𝖺 = 0) and 𝗌𝗍 ≠ 𝗌𝗎𝖼𝖼𝖾𝗌𝗌

then
8: 𝛽′

𝑤[𝑖] ← {𝖺𝖨, 𝗑,𝔻(𝖺𝖨)}
9: 𝗌𝗍 ← 𝗌𝗎𝖼𝖼𝖾𝗌𝗌

10: else
11: 𝛽′

𝑤[𝑖] ← 𝛽𝗐[𝗂]

12: Replace 𝛽𝑤 with 𝛽′
𝑤 in server

13: if 𝗌𝗍 = 𝗌𝗎𝖼𝖼𝖾𝗌𝗌 then
14: 𝜏𝑒𝑥𝑝 ← 𝖼𝖺𝗅𝖼𝖤𝗑𝗉𝖳𝗂𝗆𝖾(𝑥,𝑤, 𝜏𝑐𝑢𝑟)15: Insert (𝑥, 𝜏𝑒𝑥𝑝) at proper location in

𝗉𝗈𝗌[𝖺𝖨]16: else ⊳ It’s a dummy insertion
17: Replace 𝛽𝑤 in the server, with its re-

encrypted version 𝛽′
𝑤

18: 𝗌𝗍 ← 𝗌𝗎𝖼𝖼𝖾𝗌𝗌
19: return 𝗌𝗍

RouterORAM does not only keep the parameter sets of the 𝖠𝖼𝖼𝖾𝗌𝗌()-calls private but
also leaks nothing from the observable trace of the server-storage accesses during its
execution. On rare occasions, some steps of 𝖠𝖼𝖼𝖾𝗌𝗌() may fail. However, RouterORAM
ensures that observed bucket touch patterns always remain the same: touching one leaf
bucket, 𝑥, followed by touching another non-leaf bucket, 𝑤. The aim is, irrespective of
the situation, an adversary (in this case, the server) must not learn anything by observing
the storage trace. Specifically, the ORAM must satisfy the following privacy definition.
Definition 1 (ORAM Privacy). Let �⃗� = ((𝖺𝖱

𝖠
, 𝖺𝖨

𝖠
,𝔻(𝖺𝖨

𝖠
)), .., (𝖺𝖱

𝟣
, 𝖺𝖨

𝟣
,𝔻(𝖺𝖨

𝟣
))) denotes an

access sequence of length 𝐴, where (𝖺𝖱
𝗂
, 𝖺𝖨

𝗂
,𝔻(𝖺𝖨

𝗂
)) denotes the parameter set of the 𝑖𝑡ℎ

𝖠𝖼𝖼𝖾𝗌𝗌()-call. Let 𝖮𝖱𝖠𝖬(�⃗�) be the observable trace on the server storage due to �⃗�. Then
RouterORAM guarantees that for any two access sequences �⃗�𝟣 and �⃗�𝟤 where |�⃗�𝟣| = |�⃗�𝟤|,
an adversary , cannot distinguish between 𝖮𝖱𝖠𝖬(�⃗�𝟣) and 𝖮𝖱𝖠𝖬(�⃗�𝟤).



8 Paul and Knox

ORAM Removal At the first step of access, the client removes the block 𝖺𝖱 by invoking
𝖱𝖾𝗆𝗈𝗏𝖾()(alg:3). Since 𝗉𝗈𝗌[𝖺𝖱] is already sorted, the client finds the earliest available
location (𝛽𝗑) of 𝖺𝖱 from the front of the list. 𝛽𝑥 might contain up to 𝑍 different blocks,
so the client fetches entire 𝛽𝑥 from the server and decrypts all the slots of it to figure out
which one is 𝖺𝖱.

After finding 𝖺𝖱, the client reads its content and makes the corresponding slot empty
by writing all zeros (i.e., dummy) in it. In some special situations, 𝖺𝖱 might not be avail-
able in 𝛽𝑥; in that case, the client only updates some metadata part of the bucket (detail
is discussed in section: 3.7). At the end of 𝖱𝖾𝗆𝗈𝗏𝖾(), the client stores the updated bucket
(𝛽′𝗑) in the same leaf of the server. To protect privacy, the client re-encrypts every com-
ponent of the bucket before sending that to the server.

Sometimes (e.g. to deal with failures), the client might be required to issue a dummy
𝖱𝖾𝗆𝗈𝗏𝖾()-call (i.e., 𝖺𝖱 = 𝟢). In that case, the client just replaces a random leaf with its
re-encryption without altering anything in its local position map. The goal is to make
the actual and dummy removal access pattern indistinguishable from the server.
ORAM Insertion Each removal is paired with an insertion (alg: 4). To insert the block
𝖺𝖨 with data content 𝔻(𝖺𝖨), the client first locally maps the block with a random leaf
label: 𝑥, but deliberately misplaces the block to another random and independent non-
leaf bucket of the server, 𝛽𝑤. During insertion as well, the client re-encrypts all the
content of the touched bucket (𝛽𝑤) in the server.

The background routing process obliviously ensures that the inserted block reaches
from 𝛽𝑤 to 𝛽𝑥 so that the client can access the block in the future, from the newly mapped
bucket, 𝛽𝑥. Since the background routing pattern is deterministic, and both 𝑥 and 𝑤 are
known to the client, so the client can locally compute the expected time, 𝜏𝑒𝑥𝑝, when the
inserted block reaches its destined leaf bucket. To maintain the sorted order of 𝗉𝗈𝗌[𝖺𝖨],
after a successful insertion, the client adds (𝑥, 𝜏𝑒𝑥𝑝) as the 𝑖𝑡ℎ element of 𝗉𝗈𝗌[𝖺𝖨], such
that 𝜏𝑖−1 ≤ 𝜏𝑒𝑥𝑝 ≤ 𝜏𝑖+1.
3.6 Higher layer operations and their latency
The client can achieve higher layer operations by controlling the parameter set of the
𝖠𝖼𝖼𝖾𝗌𝗌()-calls. Block reading and manipulating the number of replicas are straightfor-
ward. The client chooses 𝖺𝖱 = 𝖺𝟣 and 𝖺𝖨 = 𝟢 (i.e., removes 𝖺𝟣 with a dummy insertion)
to read the block 𝖺𝟣 and decrease #(𝖺𝟣) by one. To read 𝖺𝟣, without affecting #(𝖺𝟣), the
client invokes 𝖠𝖼𝖼𝖾𝗌𝗌() with 𝖺𝖱 = 𝖺𝟣, 𝖺𝖨 = 𝖺𝟣 and 𝔻(𝖺𝖨) = 𝔻(𝖺𝟣). With 𝖺𝖱 = 𝖺𝟣, 𝖺𝖨 = 𝖺𝟤and 𝔻(𝖺𝖨) = 𝔻(𝖺𝟤), client can read 𝖺𝟣 with the effect of decreasing #(𝖺𝟣) and increasing
#(𝖺𝟤) at the same time. Similarly, by choosing 𝖺𝖱 = 𝟢 and 𝖺𝖨 = 𝖺𝟤 (≠ 𝟢), only #(𝖺𝟤) can
be increased. Since all these operations mentioned above can be performed by invoking
only one 𝖠𝖼𝖼𝖾𝗌𝗌(), the latency and the client work for all these operations is 𝑂(1).

Although RouterORAM is targeted for read-dominated access patterns, by no means
block writing is unsupported. Since the server may store multiple replicas of each block,
block writing is slightly sophisticated than other operations. Suppose during writing,
the client wants to update the content of block 𝖺𝟣 from 𝔻(𝖺𝟣) to 𝔻′(𝖺𝟣). So, if the block
𝖺𝟣 currently has #(𝖺𝟣)-replicas in the server, all those replicas must be updated. To do
that, at first, all stale replicas of 𝖺𝟣 must be removed from the server, and new #(𝖺𝟣)-replicas having the updated content must be inserted. This can be achieved by invoking



RouterORAM: An 𝑂(1)-latency and client-work ORAM 9

𝖠𝖼𝖼𝖾𝗌𝗌(𝖺𝖱 = 𝖺𝟣, 𝖺𝖨 = 𝖺𝟣,𝔻′(𝖺𝟣)), #(𝖺𝟣) times. As a result, the latency of the write op-
eration will be 𝑂(#(𝖺𝟣)). Since #(𝖺𝟣) is the client-controlled constant (independent of
𝑁), complexity theory-wise, the write operation will also have 𝑂(1) latency. However,
practically, the client has to incur #(𝖺𝟣)× work (as well as #(𝖺𝟣)× latency) during writing
block 𝖺𝟣, in comparison with reading the same block.
3.7 ORAM Background processing/routing
While interacting with the client, the server runs a routing process in the background,
continuously. After the client inserts block 𝖺𝖨 to 𝛽𝑤, the routing process ensures it reaches
its actual destination, 𝛽𝑥. For example (fig:1), at time instant 𝑡1, the client maps 𝑎1 with
𝛽14, but places that at a different and random bucket, 𝛽5. The routing process then ensures
that 𝑎1 reaches its mapped leaf bucket by going through the following path:𝛽5 → 𝛽2 →
𝛽1 → 𝛽3 → 𝛽7 → 𝛽14. Similarly, another inserted block, 𝑎2 must reach 𝛽11 from 𝛽4.

Fig. 1. ORAM tree and routing
The routing algorithm (alg:5) executes in a series of steps. In each step, an edge

(𝖾�̂�,�̌�) of the tree is processed, which connects a lower-level bucket 𝛽�̌� with its par-
ent, 𝛽�̂�. During background routing, the edges are processed in a fixed order, start-
ing from the top-left edge of the binary tree and ending at the bottom-right edge (i.e.,
𝖾𝟣,𝟤 → 𝖾𝟣,𝟥 → 𝖾𝟤,𝟦 → ..→ 𝖾𝖭−𝟣,𝟤𝖭−𝟥 → 𝖾𝖭−𝟣,𝟤𝖭−𝟤). Eventually, after processing each edge
(i.e., 2 × (𝑁 − 1) steps), the entire tree will have been processed, and the routing cycle
repeats forever.

The processing of each edge is simply a homomorphic evaluation over the encrypted
blocks that reside in 𝛽�̂� and 𝛽�̌�. As a result, it is possible for the server to do the routing
correctly without knowing the details of the blocks that are in transit. In addition, the
design of our routing algorithm must also ensure that the server does not learn anything
from the effects of the routing as well. For example, during the execution of the routing
algorithm, the ciphertext content of some locations may change while the remaining
locations remain unaltered. The server may try to use that information to backtrack the
path of the inserted block. Our algorithm protects against these.



10 Paul and Knox

Algorithm 5 𝖱𝗈𝗎𝗍𝖾()
1: while True do
2: for 𝖾�̂�,�̌� ∈ {𝖠𝗅𝗅 𝖾𝖽𝗀𝖾𝗌 𝗂𝗇 𝗍𝗁𝖾 𝗍𝗋𝖾𝖾} do
3: (𝜇�̂�, 𝜇�̌�) ← 𝖬𝗈𝗏𝖾𝖵𝖾𝗋𝖽𝗂𝖼𝗍(𝛽�̂�, 𝛽�̌�)
4: 𝖬𝗈𝗏𝖾(𝜇�̂�, 𝜇�̌�, 𝛽�̂�, 𝛽�̌�)

Algorithm 6 𝖬𝗈𝗏𝖾𝖵𝖾𝗋𝖽𝗂𝖼𝗍(𝛽�̂�, 𝛽�̌�)
1: 𝓁�̂� ← ⌊𝑙𝑜𝑔(�̂�)⌋ + 1,𝓁�̌� ← 𝓁�̂� + 1
2: for 𝑖 ∈ [𝑍] do
3: 𝖻𝗂𝗍 ← (�̌� = (𝛽�̂�[𝗂].𝗆.𝗑 ≫ (𝖫 − 𝓁�̌�)))
4: 𝜇�̂�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇔,⇎)
5: 𝖻𝗂𝗍 ← (𝛽�̂�[𝗂].𝗆.𝗑 = 𝟢)
6: 𝜇�̂�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, ∅, 𝜇�̂�[𝗂])7: for 𝑖 ∈ [𝑍] do
8: 𝖻𝗂𝗍 ← (�̌� = (𝛽�̌�[𝗂].𝗆.𝗑 ≫ (𝖫 − 𝓁�̌�)))
9: 𝜇�̌�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇎,⇔)

10: 𝖻𝗂𝗍 ← (𝛽�̌�[𝗂].𝗆.𝗑 = 𝟢)
11: 𝜇�̌�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, ∅, 𝜇�̌�[𝗂])12: return (𝜇�̂�, 𝜇�̌�)

Algorithm 7 𝖲𝗐𝖺𝗉(𝖻𝗂𝗍, 𝖽𝟢, 𝖽𝟣)
1: 𝗍𝗆𝗉 ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, 𝖽𝟢, 𝖽𝟣)
2: 𝖽𝟢 ← 𝖽𝟣 + 𝖽𝟣 − 𝗍𝗆𝗉

3: 𝖽𝟣 ← 𝗍𝗆𝗉

4: return (𝖽𝟢, 𝖽𝟣)

Algorithm 8 𝖬𝗈𝗏𝖾(𝜇�̂�, 𝜇�̌�, 𝛽�̂�, 𝛽�̌�)
1: for 𝑖 ∈ [𝑍] do ⊳ Swap 𝛽�̂� ↔ 𝛽�̌�2: for 𝑗 ∈ [𝑍] do
3: 𝖻𝗂𝗍 ← (𝜇�̂�[𝗂] =⇔) and (𝜇�̌�[𝗃] =⇔)
4: (𝛽�̂�[𝗂], 𝛽�̌�[𝗃]) ← 𝖲𝗐𝖺𝗉(𝖻𝗂𝗍, 𝛽�̂�[𝗂], 𝛽�̌�[𝗃])
5: 𝜇�̂�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇎, 𝜇�̂�[𝗂])
6: 𝜇�̌�[𝗃] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇎, 𝜇�̌�[𝗃])7: for 𝑖 ∈ [𝑍] do ⊳ Move up 𝛽�̌� → 𝛽�̂�8: for 𝑗 ∈ [𝑍] do
9: 𝖻𝗂𝗍 ← (𝜇�̂�[𝗃] = ∅) and (𝜇�̌�[𝗂] =⇔)

10: (𝛽�̂�[𝗂], 𝛽�̌�[𝗃]) ← 𝖲𝗐𝖺𝗉(𝖻𝗂𝗍, 𝛽�̂�[𝗂], 𝛽�̌�[𝗃])
11: 𝜇�̂�[𝗃] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇎, 𝜇�̂�[𝗃])
12: 𝜇�̌�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, ∅, 𝜇�̌�[𝗂])13: if 𝛽�̌� is a leaf bucket then ⊳ Invalidation
14: for 𝑖 ∈ [𝑍] do
15: for 𝑗 ∈ [𝑍] do
16: 𝖻𝗂𝗍 ← (𝛽�̌�.𝗂𝗅[𝗃] = 𝛽�̂�[𝗂].𝗆.𝖺)
17: 𝛽�̂�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, 𝖽𝗎𝗆𝗆𝗒, 𝛽�̂�[𝗂])
18: 𝛽�̌�.𝗂𝗅[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, 𝟢, 𝛽�̌�.𝗂𝗅[𝗂])
19: 𝜇�̌�[𝗂] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, ∅, 𝜇�̌�[𝗂])20: for 𝑖 ∈ [𝑍] do ⊳ Move down 𝛽�̂� → 𝛽�̌�21: for 𝑗 ∈ [𝑍] do
22: 𝖻𝗂𝗍 ← (𝜇�̂�[𝗂] =⇔) and (𝜇�̌�[𝗃] = ∅)
23: (𝛽�̂�[𝗂], 𝛽�̌�[𝗃]) ← 𝖲𝗐𝖺𝗉(𝖻𝗂𝗍, 𝛽�̂�[𝗂], 𝛽�̌�[𝗃])
24: 𝜇�̌�[𝗃] ← 𝖢𝖬𝗎𝗑(𝖻𝗂𝗍,⇎, 𝜇�̌�[𝗃])

In theory, the evaluation under a fully homomorphic scheme can perform any com-
putation. However, current publicly available homomorphic libraries (e.g., TFHE [19])
only support a few computation building blocks that can be used for the homomorphic
evaluation process. Therefore, we use only those available building blocks to make our
routing algorithm practically viable. Specifically, we use a few basic mathematical oper-
ations and the𝖢𝖬𝗎𝗑(𝖻𝗂𝗍, 𝖽𝟢, 𝖽𝟣)-gates [19]. Depending on the encrypted control-bit input
(𝖻𝗂𝗍), 𝖢𝖬𝗎𝗑() outputs re-encryption of either 𝖽𝟢 or 𝖽𝟣. However, since 𝖥𝖧𝖤 is IND-CPA
secure, by looking at the output, it is not possible to tell whether it is 𝖽𝟢 or 𝖽𝟣.

During processing of an edge 𝖾�̂�,�̌� (line:3-4 in alg: 5), the server actually re-arranges
the blocks that reside in the slots of 𝛽�̌� and 𝛽�̂�. With each successive re-arrangement,
each block-in-transit reduces its distance from its final destination. Referring to fig:1, at
𝑡4, edge 𝑒�̂�=2,�̌�=5 is being processed. Block 𝑎1 is currently located at 𝛽5 and block 𝑎2 is
at 𝛽2. After processing, 𝑒2,5, 𝑎1 has moved to 𝛽2 and 𝑎2 will end up at 𝛽5.

To achieve this, 𝖬𝗈𝗏𝖾𝖵𝖾𝗋𝖽𝗂𝖼𝗍() (alg:8) homomorphically evaluates the metadata of
all the blocks that currently reside in 𝛽�̂� and 𝛽�̌� and outputs two encrypted arrays (𝜇�̂�, 𝜇�̌�)storing movement decisions regarding each individual block. If 𝛽�̌� is nearer to the final
destination of the block residing at 𝛽�̂�[𝑖], then the block requires a movement from 𝛽�̂� to
𝛽�̌�, which is encoded as 𝜇�̂�[𝑖] =⇔. Otherwise, 𝛽�̂�[𝑖] does not require a movement during
the current edge processing and is encoded as ⇎. Similarly, 𝜇�̌�[] is generated for 𝛽�̌�[].



RouterORAM: An 𝑂(1)-latency and client-work ORAM 11

For the blocks of both buckets, 𝖬𝗈𝗏𝖾𝖵𝖾𝗋𝖽𝗂𝖼𝗍(), evaluates the same condition: whether 𝛽�̌�is the common ancestor of the block in question and sets the 𝖻𝗂𝗍 (line 3 & 8). Depending
on which, 𝖢𝖬𝗎𝗑() chooses the movement encoding. Dummy slots are encoded as ∅.

Finally the existing blocks of 𝛽�̂� and 𝛽�̌� are being moved according to 𝜇�̂� and 𝜇�̌�(alg:8). Basically, there could be three kinds of scenarios: a) Swap a block in 𝛽�̂�, which
requires a downward movement with a block in 𝛽�̌� requiring an upward movement (e.g.,
in fig: 1 processing 𝑒2,5 at 𝑡4) b) A block in 𝛽�̌� is required to move up, but there is no block
in 𝛽�̂� to go down. Hence, the block must be moved to an empty slot in 𝛽�̂� (in our example
processing 𝑒2,4 at 𝑡3) c) Similarly, move a block down from 𝛽�̂� to an empty slot of 𝛽�̌�(processing 𝑒5,11 at 𝑡5). Moving a block to an empty slot means, after the movement, the
source slot becomes empty (i.e., stores a dummy block). Hence, interestingly, not only (a)
but also scenarios (b) and (c) can be accomplished by performing 𝖲𝗐𝖺𝗉() operation (line:
4, 10, and 23 of alg: 7). After completion of the movement, the locations corresponding
to the source and destination blocks are updated in 𝜇�̂�[] and 𝜇�̌�[].Note that, during writing a block, the client must remove all the existing replicas of it.
However, at that moment, all the replicas might not yet reach their mapped location. So,
the client is required to somehow notify the routing process to invalidate those replicas
upon arrival. Client achieves that by adding the block’s identity in the invalidation list
(𝛽.𝗂𝗅) of the mapped buckets (alg: 3, line:12). So, before moving down any block to a
leaf node (i.e., scenario (c)), 𝖬𝗈𝗏𝖾() performs some additional checks. It evaluates the
condition whether the identity of the block-in-transit (𝛽�̌�.𝗆.𝖺) matches with any of the
elements in 𝛽.𝗂𝗅 (line:15-16). If there is a match, then the block is not moved down but
deleted by replacing the corresponding slot with 𝖽𝗎𝗆𝗆𝗒.
4 Privacy Analysis
We analyze the privacy properties of RouterORAM against an honest but curious ad-
versary, which is the common threat model for ORAM [2, 4, 5, 8, 10, 11, 17, 18]. Since
everything remains encrypted in the remote storage, the adversary  (the server in this
case) cannot learn the outsourced data. However,  can gradually observe a series of
ciphertext changes at specific locations on the server storage (i.e., the trace left due to
the execution of the protocols). Like any other ORAM, the RouterORAM restricts 
from learning anything from the generated trace due to the client’s access. Additionally,
it guarantees that  cannot learn anything during the execution of the routing process
as well. Next, we analyze the privacy properties of our protocol in gradual steps.
Theorem 1 (Privacy of 𝖱𝖾𝗆𝗈𝗏𝖾()). If 𝖥𝖧𝖤 is IND-CPA secure, the adversary  learns
nothing during a 𝖱𝖾𝗆𝗈𝗏𝖾() call, except 𝑥, the label of the touched leaf bucket.

Proof. During 𝖱𝖾𝗆𝗈𝗏𝖾(), the client touches a leaf bucket, 𝛽𝑥. Since the remote storage is
controlled by , it can notice the touched location, 𝑥. Depending on the input parameter
of the 𝖱𝖾𝗆𝗈𝗏𝖾()-call, the content of 𝛽𝑥 changes differently (e.g., if 𝖺𝖱 = 𝟢, then nothing
is changed at all). Moreover, occasionally, the 𝖱𝖾𝗆𝗈𝗏𝖾() may fail. However, irrespective
of the situation, the client always re-encrypts all the contents of the touched bucket. So,
 only observes that the entire ciphertext of the touched bucket changes from 𝛽𝑥 to 𝛽′𝑥.
Since the encryption scheme (𝖥𝖧𝖤) is IND-CPA secure,  is neither able to learn the
plaintext content of the bucket nor can guess whether any slot or the metadata of the



12 Paul and Knox

bucket has changed. In other words, if 𝜆 is the security parameter of 𝖥𝖧𝖤, then:

∀𝑖∈[𝑍]
|

|

|

|

Pr
[

(𝛽𝑥, 𝛽′𝑥) → 1 ∣ 𝛽𝑥.[𝑖] = 𝛽′𝑥.[𝑖]
]

− Pr
[

(𝛽𝑥, 𝛽′𝑥) → 1 ∣ 𝛽𝑥.[𝑖] ≠ 𝛽′𝑥.[𝑖]
]

|

|

|

|

=

|

|

|

|

Pr
[

(𝛽𝑥, 𝛽′𝑥) → 1 ∣ 𝛽𝑥.𝑙𝑖 = 𝛽′𝑥.𝑙𝑖
]

− Pr
[

(𝛽𝑥, 𝛽′𝑥) → 1 ∣ 𝛽𝑥.𝑙𝑖 ≠ 𝛽′𝑥.𝑙𝑖
]

|

|

|

|

≤ negl(𝜆)

Thus,  learns nothing except the label 𝑥 during a 𝖱𝖾𝗆𝗈𝗏𝖾() call. □

Corollary 1. A real and a dummy removal are indistinguishable from each other.
Proof. Suppose 𝖱𝖾𝗆𝗈𝗏𝖾𝟣() is a real removal which touches 𝛽𝑥1 and 𝖱𝖾𝗆𝗈𝗏𝖾𝟤() a dummy
removal which touches 𝛽𝑥2 . According to theorem: 1,  only learns 𝑥1 and 𝑥2. Since the
client chooses both 𝑥1 and 𝑥2 uniform randomly from the same distribution ([2𝐿−1, 2𝐿−
1]),  cannot differentiate them. □

Theorem 2 (Privacy of 𝖨𝗇𝗌𝖾𝗋𝗍()). If 𝖥𝖧𝖤 is IND-CPA secure, the adversary  learns
nothing during an 𝖨𝗇𝗌𝖾𝗋𝗍() call, except 𝑤, the label of the touched non-leaf bucket.
Proof. The argument is similar with theorem:1. As the client re-encrypts all the content
of the touched non-leaf bucket from 𝛽𝑤 to 𝛽′𝑤, it is impossible for  to guess which part
of 𝛽𝑤 has changed, or whether anything has changed at all. Hence,  only learns 𝑤. □
Corollary 2. A real and a dummy insertion are indistinguishable from each other.
Proof. The argument is similar to corollary: 1. In both situations, the client chooses the
touched non-leaf bucket uniform randomly from the same distribution. □

Corollary 3. During a completely successful 𝖠𝖼𝖼𝖾𝗌𝗌() call,  learns nothing except 𝑥
and 𝑤, the label of the touched leaf bucket, and the label of the touched non-leaf bucket.
Proof. During a completely successful 𝖠𝖼𝖼𝖾𝗌𝗌(), no retrial is required and the client
only makes one successful 𝖱𝖾𝗆𝗈𝗏𝖾() call and one successful 𝖨𝗇𝗌𝖾𝗋𝗍() call. Since none of
them reveal anything except 𝑥 and 𝑤, 𝖠𝖼𝖼𝖾𝗌𝗌() also reveals nothing more. □

Theorem 3 (Unnoticeable failure during an 𝖠𝖼𝖼𝖾𝗌𝗌() call). After observing a single
𝖠𝖼𝖼𝖾𝗌𝗌()-call,  cannot tell whether it has completed with any failure or not.
Proof. 𝖠𝖼𝖼𝖾𝗌𝗌() consists of one 𝖱𝖾𝗆𝗈𝗏𝖾() and one 𝖨𝗇𝗌𝖾𝗋𝗍(). On rare occasions, either
of them may fail. As a result, overall 𝖠𝖼𝖼𝖾𝗌𝗌() may fail as well. In the case of failure,
another 𝖠𝖼𝖼𝖾𝗌𝗌() is invoked (for retrial), but during the current 𝖠𝖼𝖼𝖾𝗌𝗌()-call  cannot
notice whether there is any failure.

𝖱𝖾𝗆𝗈𝗏𝖾() fails when the client expects the block 𝖺𝖱 (≠ 0) at its mapped leaf bucket
𝛽𝑥, but cannot find it there. In that case,𝖱𝖾𝗆𝗈𝗏𝖾() returns ∅, and𝖠𝖼𝖼𝖾𝗌𝗌() issues a dummy
insertion instead of inserting 𝖺𝖨. However,  can neither notice 𝖱𝖾𝗆𝗈𝗏𝖾() has failed
(theorem: 1), nor that the subsequent insertion is a dummy one (corollary: 2). Thus, 
cannot determine whether the 𝖠𝖼𝖼𝖾𝗌𝗌() call completed with a failed removal or not.

𝖨𝗇𝗌𝖾𝗋𝗍() fails, when the randomly chosen bucket 𝛽𝑤 is already full, and 𝖺𝖨 (≠ 0)
cannot be inserted into 𝛽𝑤. Note that 𝖨𝗇𝗌𝖾𝗋𝗍(𝖺𝖨,𝔻(𝖺𝖨)) is invoked only after a successful
𝖱𝖾𝗆𝗈𝗏𝖾(), and no additional step is performed within the same 𝖠𝖼𝖼𝖾𝗌𝗌()-call, in the case
of insertion failure. Since  cannot notice the failed insertion (theorem: 2),  cannot
say whether the observed 𝖠𝖼𝖼𝖾𝗌𝗌() call completed with a failed insertion. □



RouterORAM: An 𝑂(1)-latency and client-work ORAM 13

Corollary 4.  cannot distinguish between an original 𝖠𝖼𝖼𝖾𝗌𝗌() call and a retrial of it.

Proof. Suppose𝖠𝖼𝖼𝖾𝗌𝗌𝟤() is a retrial call, invoked because of the failure of either𝖱𝖾𝗆𝗈𝗏𝖾()
or 𝖨𝗇𝗌𝖾𝗋𝗍() during 𝖠𝖼𝖼𝖾𝗌𝗌𝟣(). So,  notices a pair of buckets (𝛽𝑥1 , 𝛽𝑤1

) touched during
𝖠𝖼𝖼𝖾𝗌𝗌𝟣() and another pair (𝛽𝑥2 , 𝛽𝑤2

) touched during 𝖠𝖼𝖼𝖾𝗌𝗌𝟤(). The touched leaf and
non-leaf locations in a single access are statistically independent. We have to show that
during the retrial as well, the touched buckets are statistically independent.

If𝖱𝖾𝗆𝗈𝗏𝖾() fails during𝖠𝖼𝖼𝖾𝗌𝗌𝟣(), 𝑥1 is removed from 𝗉𝗈𝗌[𝖺𝖱] and𝖠𝖼𝖼𝖾𝗌𝗌𝟤() touches
𝛽𝑥2 , the mapped location of next replica of 𝖺𝖱. Since mapped locations of all the replicas
of 𝖺𝖱 are chosen randomly and independently, 𝑥2 and 𝑥1 are statistically independent.
In the case of 𝖨𝗇𝗌𝖾𝗋𝗍() failure in 𝖠𝖼𝖼𝖾𝗌𝗌𝟣(), a dummy removal is made during 𝖠𝖼𝖼𝖾𝗌𝗌𝟤(),which also chooses 𝑥2 randomly and independently. As a result, 𝑥1 and 𝑥2 are always
independent of each other.

Irrespective of the nature of failure in 𝖠𝖼𝖼𝖾𝗌𝗌𝟣(), the 𝖨𝗇𝗌𝖾𝗋𝗍() call during 𝖠𝖼𝖼𝖾𝗌𝗌𝟤(),chooses𝑤2 randomly and independently. Hence, there is no relation between𝑤1 and𝑤2.
Thus, 𝑥1, 𝑥2, 𝑤1, and 𝑤2 are always statistically independent, and  cannot distinguish
between an original 𝖠𝖼𝖼𝖾𝗌𝗌() call and a retrial of it. □

Lemma 1. Irrespective of the situation, by observing a series of 𝖠𝖼𝖼𝖾𝗌𝗌() calls,  only
learns the labels of a sequence of the bucket labels, nothing else.

Corollary 5 (Access pattern privacy). RouterORAM meets ORAM privacy definition:1

Proof. From𝖮𝖱𝖠𝖬(�⃗�), only learns a sequence of touched bucket labels �⃗� = ⟨(𝑥𝐴, 𝑤𝐴),
.., (𝑥1, 𝑤1)⟩ (lemma: 1). Since, irrespective of the situation (i.e., irrespective of the input
parameters, success or failure, original or retrial, etc.), labels of all the touched buckets
(i.e., {𝑥1, .., 𝑥𝐴} ∪ {𝑤1, ..𝑤𝐴}) are statistically independent of each other. Thus,  can-
not distinguish between two such series of ORAM accesses: 𝖮𝖱𝖠𝖬(𝗒𝟣) and 𝖮𝖱𝖠𝖬(𝗒𝟤),when |𝗒𝟣| = |𝗒𝟤|. □

Theorem 4 (Privacy of 𝖱𝗈𝗎𝗍𝖾()).  learns nothing during the routing process.

Proof. Not only the outsourced data (and the metadata) but also any information derived
during routing (i.e., 𝜇�̂�, 𝜇�̌�, the computed 𝖻𝗂𝗍 value in alg: 6, 8, etc.) always remain en-
crypted under 𝖥𝖧𝖤. The server can only process them homomorphically. By definition,
the server cannot learn the underlying plain text during the homomorphic evaluation.
Since 𝖥𝖧𝖤 is IND-CPA secure,  cannot learn anything by observing the changes in
the bucket ciphertexts due to homomorphic evaluation as well. Moreover, the pattern of
touched buckets during routing is always fixed. Hence,  also learns nothing from the
generated trace due to routing.

However, in-general the execution path of an algorithm may depend on its input (e.g.,
number of iterations, branching, etc.).  may try to closely monitor the execution flow
of the routing algorithm and learn something. Nevertheless, the design of RouterORAM
ensures that the execution flow of all the routing-related algorithms (alg: 5- 8) remains
fixed and that all the steps are always executed. Hence,  cannot learn anything by
observing the execution path of the routing process as well. □



14 Paul and Knox

5 Simulation results
𝖠𝖼𝖼𝖾𝗌𝗌() might fail. Fortunately, in RouterORAM, failure does not affect the privacy
or read/write functionality. To cope with access failure, the client is just required to
retry. However, if the failure rate is too high, then effectively the client might have to
touch much more than two buckets per access. If true, then the effective latency and
client work may no longer remain 𝑂(1). So, to verify the amount of failures, we perform
multiple simulations of our protocol with our simulator [1]. We simulate the steady,
long-term (∼5 months) behaviors of RouterORAM with different daily usage amounts
(100MB/day to 12.8GB/day remote data access). During simulation, conservatively, we
assume a very slow disk (40MB/s). RouterORAM is expected to produce fewer failures
with the faster disks because, in that case, the server will require less time to handle the
client’s I/O requests and can spend more time/resources to perform routing.

Fig. 2. Probabilities of failures and congestion Fig. 3. Number of bucket touches
The detailed simulation results are shown in fig: 2. Routing congestion might occur

when a block is supposed to be moved, but the destination bucket is already full. For
each access call, one block is misplaced in a non-leaf bucket. So, the more frequently
the client accesses the remote storage, the more slots in the non-leaf buckets remain
occupied with misplaced blocks, and the probability of routing congestion increases.
Routing congestion incurs some delay for the affected block in reaching its destination,
which might cause 𝖱𝖾𝗆𝗈𝗏𝖾()-failure, but not always. 𝖱𝖾𝗆𝗈𝗏𝖾()-failure occurs only if the
client tries to access the affected block replica before its delayed arrival time.

Since the expected number of full non-leaf buckets increases with access frequency,
the probability of randomly chosen 𝛽𝑤 during 𝖨𝗇𝗌𝖾𝗋𝗍() to be full also rises with access
frequency. Which is nothing but the failure probability of 𝖨𝗇𝗌𝖾𝗋𝗍().

In the case of either 𝖱𝖾𝗆𝗈𝗏𝖾() or 𝖨𝗇𝗌𝖾𝗋𝗍() failure, the client invokes another 𝖠𝖼𝖼𝖾𝗌𝗌()
(i.e., additional two bucket touches), which might also fail with the same probability,
and this might create an infinite series. Suppose 𝖥𝖠 is the failure probability of 𝖠𝖼𝖼𝖾𝗌𝗌()
call, then by following the geometric distribution, we can compute the expected number
of bucket touches per access is:

𝟤 ×
∞
∑

𝗄=𝟣
𝗄 × 𝖥𝗄−𝟣𝖠 × (𝟣 − 𝖥𝖠) = 𝟤(𝟣 − 𝖥𝖠)

∞
∑

𝗄=𝟣
𝗄𝖥𝗄−𝟣𝖠 =

𝟤(𝟣 − 𝖥𝖠)
(𝟣 − 𝖥𝖠)𝟤

= 𝟤
(𝟣 − 𝖥𝖠)

(1)

Since 𝖠𝖼𝖼𝖾𝗌𝗌() fails, whenever either of 𝖨𝗇𝗌𝖾𝗋𝗍() or 𝖱𝖾𝗆𝗈𝗏𝖾() fails, 𝖥𝖠 is the sum of the
failure probabilities of 𝖨𝗇𝗌𝖾𝗋𝗍() and 𝖱𝖾𝗆𝗈𝗏𝖾(). So, by combining the results of fig: 2 and



RouterORAM: An 𝑂(1)-latency and client-work ORAM 15

equation: 1 we get fig: 3. From this, it can be observed that the expected number of
bucket touches increases with the usage amount. However, the rate of increase is very
slow, and the expected number of bucket touches per access remains under 2.26 (instead
of 2), even for very high usage settings. As a result, it can be safely concluded that
RouterORAM’s latency and client work remain truly 𝑂(1) in practical usage scenarios.
6 Discussions
In the past, BurstORAM [11] attempted to minimize the latency to 𝑂(1) in a bursty
setting. However, in their model, the client must remain active after their bursty access
period to perform the pending reshuffling task. Due to this, the effective client work and
bandwidth blowup per access become 𝑂(𝑙𝑜𝑔𝑁). Also, in BurstORAM, the client must
be able to store a large part of the outsourced database (𝑂(

√

𝑁)) locally.
Theoretically, Apon et al. [15] first showed that with the server computation model,

bandwidth blowup can be reduced to 𝑂(1), and Onion-ring ORAM [17] is the latest
scheme in that model. However, to date, no ORAM scheme that supports both read and
write operations has been able to achieve 𝑂(1)-latency along with 𝑂(1) client work. The
theoretical contribution of this paper is to show how to achieve that by trading off the
server’s storage space and computation power. Another benefit is that 𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀
accomplishes this without locally storing any part of the outsourced database (stash).

Table 2. Comparisons
Scheme Allowed

modes
Bandwidth
blowup

Total server
storage

Total client
work

Total server
work

Latency

PathORAM [3] R/W 𝑂(𝑙𝑜𝑔𝑁2) 𝑂(𝑁) 𝑂(𝑙𝑜𝑔𝑁2) 𝑂(𝑙𝑜𝑔𝑁2) 𝑂(𝑙𝑜𝑔𝑁2)
PRO-ORAM [9] R-only 𝑂(1) 𝑂(𝑁) 𝑂(1) 𝑂(

√

𝑁) 𝑂(1)
WoORAM [8] W-only 𝑂(1) 𝑂(𝑁) 𝑂(1) 𝑂(1) 𝑂(1)
BurstORAM [11] R/W 𝑂(𝑙𝑜𝑔𝑁) 𝑂(𝑁) 𝑂(𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁) 𝑂(1)
Onion-Ring ORAM [17] R/W 𝑂(1) 𝑂(𝑁) 𝑂(𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁) 𝑂(𝑙𝑜𝑔𝑁)
Panacea 3 [18] R/W 𝑂(1) 𝑂(𝑁) 𝑂(1) 𝑂(𝑁∕𝑘) 𝑂(𝑁∕𝑘)
RouterORAM R/W 𝑂(1) 𝑂(𝑁) 𝑂(1) 𝑂(𝑙𝑜𝑔𝑁) 𝑂(1)

Table 2 compares𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 with existing ORAM schemes. Although WoORAM
and PRO-ORAM also have 𝑂(1) latency and client work, none of them support both
reading and writing. In the read/write model, Panacea recently minimized the total
client work to 𝑂(1) by removing offline work altogether. However, its latency is still
proportional to the outsourced data size (𝑁). From that aspect, 𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 is the
first read/write ORAM scheme that achieves 𝑂(1) latency and client work. It is to be
noted that the total amount of server work does not go away. It is still 𝑂(𝑙𝑜𝑔𝑁) due to
the theoretical limit of R/W ORAM.

To clarify the complexity of the write operation, it remains𝑂(1) as long as the access
pattern is bursty and read-dominated, irrespective of data size or server configurations.
As discussed in section 3.6, the write complexity is directly proportional to the number
of existing replicas of the written block (i.e., #(𝑎)), which should be a small constant for
a bursty read-dominated access, which is the targeted usage scenario of 𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 .

3 It works in a batched setting, and 𝑘 is the batch size



16 Paul and Knox

However, the client has the flexibility to choose any value for #(𝑎). If this value escalates
to 𝑂(𝑁), the complexity of the write operation would then increase to 𝑂(𝑁) as well.

Particularly, the choice of #(𝑎) = 𝑂(𝑁) makes sense only if the client creates
continuous (rather than bursty) heavy traffic of write operations, that too only on the
specific block 𝑎. We acknowledge that in this specific situation, the write operation of
𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 will no longer remain efficient (however, the read will still remain 𝑂(1)).

Another interesting aspect of 𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 is that it reduces the number of dum-
mies on the server and places replicas in those spaces. As a result, it does not necessarily
always consume more storage than other tree-based ORAM schemes with server com-
putation (e.g., Onion-ring ORAM), despite trading off storage with latency. It might take
more storage if the total number of replicas becomes quite high, which can happen if the
client sets up 𝑅𝑜𝑢𝑡𝑒𝑟𝑂𝑅𝐴𝑀 to support continuous (rather than bursty) accesses. But in
any case, the server storage will not become unmanageable (e.g., exponential).
7 Conclusions and future work
We propose RouterORAM, which protects remote storage access pattern privacy with
only 𝑂(1)-latency and 𝑂(1)-client work. Although it does not have any restriction re-
garding the client’s access pattern, its benefits can be exploited maximally for a bursty
and read-dominated remote access pattern, which is a very common remote storage ac-
cess pattern. Router-ORAM is based on the unique idea of server-assisted routing of de-
liberately misplaced blocks. It utilizes the server’s unconsumed computation capability,
with homomorphic evaluation, to minimize the access latency and the client’s burden
without compromising any privacy. We give theoretical proofs for all claimed privacy
properties. We demonstrate its practicality, by simulating its long-term behavior.

RouterORAM achieves the minimal possible latency and client work from a theo-
retical complexity viewpoint, but further research, especially under the lens of imple-
mentation efficiency, is still possible. The constant 𝑂(1) term in the analysis is domi-
nated by the execution time of the operations of the underlying homomorphic scheme,
which might be optimized by exploiting some special properties of different homomor-
phic encryption schemes. Utilizing trusted execution environments (TEEs) to instantiate
RouterORAM might be an interesting research direction. TEEs would not only improve
performance but also might allow stronger adversaries to be withstood (e.g., an actively
malicious server rather than the conventional honest-but-curious one).
Acknowledgments. This project was made possible in-part through the support of the National
Cybersecurity Consortium and the Government of Canada (CSIN). The authors would also like
to thank the anonymous reviewers for their valuable comments and suggestions, which greatly
improved the quality of this paper.

References
1. S. Paul, ORAM-Simulator. (September 16, 2024). Rust. [Online]. Available:

https://github.com/sumitkumarpaul/oram
2. O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious RAMs,” J.

ACM, vol. 43, no. 3, pp. 431–473, May 1996, doi: 10.1145/233551.233553.
3. E. Stefanov et al., “Path ORAM: an extremely simple oblivious RAM protocol,” in Proceedings

of the 2013 ACM SIGSAC conference on Computer & communications security - CCS ’13,
Berlin, Germany: ACM Press, 2013, pp. 299–310. doi: 10.1145/2508859.2516660.



RouterORAM: An 𝑂(1)-latency and client-work ORAM 17

4. G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico, and E. Shi, “OptORAMa: Op-
timal Oblivious RAM,” in Advances in Cryptology – EUROCRYPT 2020, vol. 12106, A. Can-
teaut and Y. Ishai, Eds., in Lecture Notes in Computer Science, vol. 12106. , Cham: Springer
International Publishing, 2020, pp. 403–432. doi: 10.1007/978-3-030-45724-2_14.

5. Ren L., Fletcher C., Kwon A., Stefanov E., Shi E., Van Dijk M., Devadas S. Constants count:
Practical improvements to oblivious RAM, in Proceedings of the 24th USENIX Security Sym-
posium, 2015, pp. 415 - 430

6. M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern disclosure on Searchable Encryp-
tion: Ramification, Attack and Mitigation”.

7. R. Balasubramonian, “Memory Security,” in Innovations in the Memory System, in Synthe-
sis Lectures on Computer Architecture. , Cham: Springer International Publishing, 2019, pp.
81–101. doi: 10.1007/978-3-031-01763-6_11.

8. D. S. Roche, A. Aviv, S. G. Choi, and T. Mayberry, “Deterministic, Stash-Free Write-
Only ORAM,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, Dallas Texas USA: ACM, Oct. 2017, pp. 507–521. doi:
10.1145/3133956.3134051.

9. S. Tople, Y. Jia, and P. Saxena, “PRO-ORAM: Practical Read-Only Oblivious RAM,” 22nd
International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pp.
197–211, 2019.

10. E. Stefanov and E. Shi, “ObliviStore: High Performance Oblivious Cloud Storage,” in 2013
IEEE Symposium on Security and Privacy, Berkeley, CA: IEEE, May 2013, pp. 253–267. doi:
10.1109/SP.2013.25.

11. J. Dautrich, E. Stefanov, and E. Shi, “Burst ORAM: Minimizing ORAM Response Times
for Bursty Access Patterns,” presented at the 23rd USENIX Security Symposium (USENIX
Security 14), 2014, pp. 749–764.

12. Y. Chen, K. Srinivasan, G. Goodson, and R. Katz, “Design implications for enterprise stor-
age systems via multi-dimensional trace analysis,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, Cascais Portugal: ACM, Oct. 2011, pp. 43–56.
doi: 10.1145/2043556.2043562.

13. A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller, “Measurement and Analysis of
Large-Scale Network File System Workloads,” presented at the ATC’08: USENIX 2008 An-
nual Technical Conference, 2008, pp. 213–226.

14. W. W. Hsu and A. J. Smith, “Characteristics of I/O traffic in personal computer and server
workloads,” IBM Syst. J., vol. 42, no. 2, pp. 347–372, 2003, doi: 10.1147/sj.422.0347.

15. D. Apon, J. Katz, E. Shi, and A. Thiruvengadam, “Verifiable Oblivious Storage,” in Public-
Key Cryptography – PKC 2014, vol. 8383, pp. 131–148.

16. S. Devadas, M. Van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs, “Onion ORAM:
A Constant Bandwidth Blowup Oblivious RAM,” in Theory of Cryptography, vol. 9563, E.
Kushilevitz and T. Malkin, Eds., in LNCS, vol. 9563, 2016, pp. 145–174.

17. H. Chen, I. Chillotti, and L. Ren, “Onion Ring ORAM: Efficient Constant Bandwidth Obliv-
ious RAM from (Leveled) TFHE,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 345–360.

18. K. Cong, D. Das, G. Nicolas, and J. Park, “Poster: Panacea — Stateless and Non-Interactive
Oblivious RAM,” in Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pp. 3585–3587.

19. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for Boolean and Integer Arith-
metics Over Encrypted Data. (2022). Zama. [Online]: https://github.com/zama-ai/tfhe-rs

20. K. S. Tinani, B. Choithwani, B. Patil, P. Faiyazkhan, and T. Salat, “Study on Us-
age Pattern of Public Cloud Storage,” ijcse, vol. 7, no. 6, pp. 922–927, Jun. 2019, doi:
10.26438/ijcse/v7i6.922927.


