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Abstract

After an epidemic outbreak, government and medical institutions try to mitigate the
consequences with suitable interventions. Unfortunately, interventions that seem to be
successful in theory may be degraded in practice by manifold types of frictions such as de-
lays and erroneous situation assessments. This paper discusses the effects of such frictions.
For this purpose, a traditional compartmental model is supplemented by a rule-based con-
trol unit, which sets countermeasures into effect when situation assessments exceed critical
threshold values.

The model, based on a classical compartmental model, is used to represent the chain
of events which occurred in Italy in early 2020. Using analytical considerations, we focus
on stability and on the calculation of the reproduction number. With the help of simu-
lation runs, we also investigate the sensitivity of the model parameters and the potential
influence of the control unit. The paper concludes with a discussion of the limitations of
the underlying model and of the executed analysis.

1 Introduction

In a prophetic Ted talk in 2015, Bill Gates warned about the dangers of a pandemic [16], followed
by a more detailed elaboration [17] of his viewpoint in course of the COVID-19 pandemic.
Though COVID-19 seems to be almost harmless compared to e.g. infamous Ebola, [33] states
6,952,509 deaths worldwide caused by this virus until July 26th, 2023. This makes COVID-19
one of the most deadliest pandemics in history.

Naturally, there is a strong interest in mitigating such an outbreak. Computer simulations of
models representing both, epidemics and various interventions, are often used for that purpose.
Depending on the specific illness and the chosen perspective, diverse models have been proposed
[21]. Having COVID-19 in mind, we focus on an SEIR model [7], extended by compartments
for hospitalized persons, persons being in a critical medical condition, and dead individuals.
Without being too detailed, this extension makes the model more suitable for assessing the
effectiveness of specific countermeasures. A control unit evaluates the outbreak situation con-
tinuously by using a score function. Based on this situation assessment, the control unit decides
about actions to be taken in course of intervention management. In the model, these actions
are represented by an adaption of model parameters like the infection rate β. The decisions
are made based on comparisons between the score function and predefined thresholds. After
making the decision, the chosen actions are executed. We distinguish between decision and
execution, because frictions may lead to an imperfect implementation of the chosen decision.
Frictions have typically the tendency to worsen the situation [4]. Though one is naturally in-
terested in avoiding any friction, they are more or less inevitable e.g. due to the time required
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for making a decision. The extension of a traditional epidemic model by a control unit and
by frictions aims at the provision of a more comprehensive model of intervention management.
Such a model may help to identify better suitable criteria for starting (and maybe ending) in-
terventions. Though the motivation for our work lies in the realm of the COVID-19 pandemic,
the authors intend to provide a more general insight into the mechanisms and possible obstacles
to control an epidemic.

The paper is organized as follows. After an overview of related work in section 2, we in-
troduce the proposed model in section 3. Section 4 shows how the model is calibrated for
representing the chain of events in Italy in early 2020. The model is analyzed using theoret-
ical methods in section 5. Afterwards, Section 6 investigates the model based on simulation
experiments. Limitations of the underlying model and of the executed analysis are addressed
in section 7. The paper closes with a discussion and an outlook in section 8.

2 Related Work

COVID-19 has shown that the capability of predicting the evolution of an epidemic is of vital
interest. But it has also led to the insight that considerations restricted to the epidemics
domain will not necessarily give a realistic picture [22]. The inclusion of economics [30, 13], for
example, is mandatory for assessing the consequences of interventions from a global perspective,
because trying to fight an epidemic usually impairs economics. Another domain influencing the
evolution of an epidemic by affecting the effectiveness of interventions is psychology [35, 19].
Being in a potentially dangerous situation of course changes the behavior of the population [20].
The influence of rumors on the compliance with countermeasure regulations has been analyzed
in [15] and, more detailed, in [14]. Rumors are an example, how misinformation may influence
human behavior [18]. A general model of cognitive information processing and thus on the
influence of human biases and of irrationality on decision-making is developed in [11]. The
paper [11] focuses on social engineering as exemplary application instead of epidemics, though.
It follows the basics of risk assessment, i.e. analyzing the effects of an off-nominal (i.e. irrational
in our case) behavior of the underlying system (see e.g. [10, 12]).

The design of control strategies for intervention planning during disease outbreaks is the
topic of [26, 36, 37]. A corresponding holistic systems informatics approach is discussed in [42].
Specific intervention strategies are analyzed in [9]. The paper [25] describes a framework for
analyzing suitable strategies for disease containment. It takes limited resources into account as
well. A decision support system aiming in the protection of critical infrastructures in case of an
outbreak is presented in [24]. The topic of response planning is also addressed in [29]. A multi-
domain analysis of the intervention problem is given in [22]; here, Larson and Nigmatulina state
that despite of all medical interventions, the control of epidemics via social contact rate may
be the most effective countermeasure. An epidemics control with inclusion of organizational
delays is discussed in [38].

3 Model Description

The paper investigates suitable intervention strategies, when interventions are only applied
when a continuously worsening situation triggers corresponding actions and when interventions
are affected by frictions. This leads to a heterogeneous modeling approach, in which an ODE
describing the evolution of the epidemics is supplemented by a rule system representing a control
unit. The control unit tries to mitigate the consequences of the epidemic by setting counter-
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measures into effect. In our case, these interventions are represented by changing the values of
some model parameters correspondingly. Non-idealism is taken into account by the possibility
of an erroneous number of infectious persons and by the inclusion of delayed interventions due
to non-instantaneous decision processes, communication needing some time, and bureaucratic
processes.

3.1 ODE Model

We model epidemics by extending the standard SEIR model [27]. Such an model is a quite
prominent tool for describing outbreaks of COVID-19 [7] and other diseases with a relevant
incubation period. We extend the standard SEIR model with compartments of hospitalized H,
critical C and dead D individuals analogous to [39]. This gives the epidemics model shown in
figure 1).

Compartments
S Susceptibles
E Exposed
I Infected
H Hospitalized
C Critical (ICU)
R Recovered
D Dead

Figure 1: Flowchart of the SEIHCRD Model (1) (left); list of model compartments (right)

In the model, susceptible individuals can get infected when in contact with an infectious
individual. This is represented in the model by a flow from the compartment S of susceptibles
to the compartment E of so-called exposed individuals. Exposed individuals are infected, but
not yet infectious. Becoming infectious after some time is represented by a flow from E to the
compartment I of infected individuals with a rate α. Infectious individuals can either recover by
transition to the compartment R, or have to be hospitalized due to a worsening condition. The
latter case is described by a flow to the compartment H. Hospitalized individuals can recover as
well or have to be transferred to intensive care units, which are represented by the compartment
C. Patients who could be stabilized move back to the state ’hospitalized’. Otherwise they die
and end up in the compartment D, which only tracks disease related deaths. Additionally, we
introduce vital dynamics by a birth rate ν increasing S and a natural death rate µ not related to
COVID-19, affecting all compartments except D. This gives the following ordinary differential
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equation system:

S′(t) = −βI(t)S(t)N−1 + δR(t) + ν − µS(t)
E′(t) = βS(t)I(t)N−1 − αE(t)− µE(t)
I ′(t) = αE(t)− γI(t)− µI(t)
H ′(t) = γ(1− pa)I(t) + λ(1− pf )C(t)− σH(t)− µH(t)
C ′(t) = σpcH(t)− λC(t)− µC(t)
R′(t) = γpaI(t) + σ(1− pc)H(t)− δR(t)− µR(t)
D′(t) = λpfC(t)

(1)

with N = S + E + I +H + C + R. The meaning of the parameters of the ODE system (1) is
described in Table 1.

Parameters Meaning
α ∈ R+ Rate of being infected
β ∈ R+ Transmission rate
γ ∈ R+ Rate of leaving the state ’infectious’
δ ∈ R+ Rate of becoming susceptible again after recovery
σ ∈ R+ Rate of leaving the state ’hospitalized’

(either by recovery or transfer to the ICU)
λ ∈ R+ Rate of leaving the state ’being in critical condition’

(either by becoming hospitalized again or by dying)
pa ∈ [0, 1] Fraction of infected individuals needing no hospital treatment
pc ∈ [0, 1] Fraction of hospitalized agents switching to a critical state
pf ∈ [0, 1] Fraction of critical cases resulting in death
ν ∈ R+ Birth rate
µ ∈ R+ Natural death rate

Table 1: Parameters of model (1)

The parameters α, β, γ, δ, σ, λ, ν and µ have the unit days−1. The parameters pa, pc and pf
are unit-less, as denoting fractions. We have introduced vital dynamics, i.e. births and natural
deaths, since a stability analysis without vital dynamics is inadequate. Usually, vital dynamics
does not influence the outcome of a single epidemic outbreak too much due to the different time
scales of both processes.

3.2 Control Unit and Frictions

In the following, only countermeasures that can be represented by a reduction in the infection
rate β are considered like for example wearing a mask or social distancing. For this purpose
the value of β is multiplied by a corresponding scaling factor [8]. This approach is capable
of including the unwillingness of parts of the population to follow the regulations as well by
modifying the scaling factor. Countermeasures are set into effect by the control unit.

Including an explicit control is not very common. Up to the knowledge of the authors,
corresponding discussions do not exist in the literature up to now. Usually, it is assumed that
the countermeasures are setting in at a given time. A simple version of such a control process
can be represented by a set of condition-action rules. The condition part of a rule will be
triggered by a situation assessment measure exceeding a critical threshold. As a consequence,
the related intervention action will be executed. As indicated above, this means a corresponding
reduction of β.
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For improving the faithfulness of the model, imperfections — hereafter also called frictions
— both in the application of the countermeasures and in the decision-making process are taken
into account. In order to keep the upcoming analysis at a simple level, we include only two
different kinds of frictions:

Imperfect observations: Imperfect observations refer to the existence of measurement er-
rors. We specifically consider a difference between observed and actual infections. Such a
difference can be attributed to various factors, such as limited testing capacity or asymp-
tomatic cases going undetected [34]. Delays in case reporting may contribute to this effect
as well. Imperfect observation can lead to a dangerous underestimation of the epidemic
[40].

Delay in actions: Delays may occur in all steps of the decision-making process. It may take
some time to recognize the need for an intervention, to actually make a decision and to
implement the specific countermeasures decided upon. Naturally, delays can impact the
timeliness of interventions.

Definition (Control Unit) The control unit decides about required actions based on the
current state x(t) = (S(t), E(t), I(t), H(t), C(t), R(t), D(t))T . The decision process is pa-
rameterized by:

1. Compartment weights wI , wH , wC , wD ∈ R+

2. (Mean) Observation correctness ε ∈ [0, 1]

3. Action thresholds T1, T2, T3 ∈ [0, 1] with T1 < T2 < T3

4. Effectiveness η1, η2, η3 ∈ [0, 1] of countermeasures

5. (Mean) Delay τ ∈ R+

The number of actually infected people is given by I whereas εI is the number of detected
cases. The compartment weights are used in the score function

Φ(x(t), wI , wH , wC , wD, ε) =
wIεI(t) + wHH(t) + wCC(t) + wDD(t)

wI + wH + wC + wD
(2)

for assessing the criticality of the current system state x(t). If the score function value
exceeds a given threshold Ti, the control unit sets corresponding countermeasures into
effect. This is represented by a reduction in the transmission rate β by scaling β with the
corresponding efficiency ηi. This reduction takes place with a delay τ after Ti has been
triggered. From then on, the ODE system (1) is solved with β′ = ηiβ instead of β. For
reasons of simplicity, we only consider the activation of countermeasures, but not their
de-activation.

The compartment weights determine the individual importance of the corresponding com-
partment levels in the criticality assessment. We use the exemplary values given in Table 2.
They have been chosen just based on an educated guess. A large number of fatalities is un-
doubtedly most alarming, hence it has the highest weight. The number of infected individuals
is associated with the second highest weight. Though the number of e.g. persons in intensive
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care seems to be more alarming, it allows a much more instantaneous reaction contrary to hos-
pitalized persons or persons in critical care in case of COVID-19 [21] due to the usually large
time gap between infection and requiring an ICU. Finally, we use a weight wC larger than wH

in order to highlight intensive care unit (ICU) beds and caring personnel as a more valuable
and limited resource than standard hospital beds.

Compartments Weights
D wD = 0.5
I wI = 0.25
C wC = 0.15
H wH = 0.1

Table 2: Values of the compartment weights

Many countries tracked the number of infected, hospitalized, critical and dead individuals
and based their intervention management on these data [3]. Different lockdown levels with
different rules and varying degrees of effectiveness have been introduced depending on whether
certain thresholds are reached [2]. This relates to the structure of the control unit in the
definition. With a balance of complexity and faithfulness in mind, three different thresholds Ti

with associated effectivenesses ηi are distinguished.

3.3 Model Behavior

α = 0.3 γ = 0.01 σ = 0.5 pa = 0.79 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.12 µ = 0.01

Figure 2: Dynamics of the model without control unit

The proposed model was implemented in the Julia programming language [5], whereby the
differential equations package and its solvers has been used [31]. Utilizing so-called callback
functions [1], we can access and change the parameters of the differential equation system
during the numerical integration. This allows a straightforward implementation. We will now
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showcase a few examples. Figure 2 shows a situation in which the levels of the compartments
S,E, I,H,C,R converge to a non-zero equilibrium, whereas the level of deaths D steadily
increases. Due to the non-zero equilibrium of I and S, the flow to the compartment D is
compensated by the birth rate. In case of a larger value of γ, the epidemic dies out.

α = 0.3 γ = 0.01 σ = 0.5 pa = 0.79 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.12 µ = 0.01

(wI , wH , wC , wR) = (0.25, 0.1, 0.15, 0.5) (T1, T2, T3) = (0.04, 0.05, 0.1)
τ = 10, ε = 1 (η1, η2, η3) = (0.25, 0.5, 0)

Figure 3: The inclusion of a control component changes the dynamics fundamentally compared
to Figure 2 despite of unchanged parameter values.

We will now apply interventions. In the situation of figure 3 with a delay of τ = 10 days,
countermeasures are implemented after roughly 45 days leading to an extinction of the disease
and to a total number of deaths of only 0.0025. When a shorter delay of only 1 day is used, the
control unit would intervene after 35 days leading again to the extinction of the disease and
to a number of deaths of now 0.002. When the delay in increased to the very large value of
τ = 100 days, the control unit steps in three times: after 135, 148, and 211 days. The epidemic
still dies out, resulting in a death rate of 0.0056. Coming back to the example of figure 3 with
τ = 10 days, we will now increase the number of unregistered cases by reducing ε to ε = 0.6.
In this case, an intervention is realized after 78 days. The number of dead individuals would
rise to 0.04 compared to 0.0025 for ε = 1.0.

The results can be summarized in such a way that the presence of a control unit can lead
to fundamental changes. Triggering suitable countermeasures may lead to an effective decrease
of infection numbers and thus to a successful epidemics management. Naturally, frictions can
be disadvantageous. They may postpone or scale down the effects of interventions.

4 Application to COVID-19

We will now apply the model to the case of COVID-19 for validating our modeling approach.
This may also be a good opportunity to gain new insights into intervention management. We
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use the data set [28], which compiles the official numbers of infections, hospitalizations, ICU-
patients and deaths for many countries. The numerical calculations are done using R.

We focus on the pandemic at a country level, because observation processes and interven-
tion management are executed more or less consistently. In this respect, e.g. Germany was
excluded as a candidate for a deeper analysis due to its federal structure and the associated
in-homogeneous countermeasure management. Italy is considered as being much more suitable,
because the chosen counter-measures are well documented and the case numbers have been up-
dated daily. We will look at the time frame before and after the first lockdown, i.e. at the time
interval between 22/02/2020 (first case numbers are reported) and 15/05/2020 (the lockdown
was eased). Due to the short period of time, the model parameters are assumed to be constant;
it is not necessary to take virus mutations with different illness characteristics into account [41].

Some of the model parameters result from illness data in a straightforward manner. This
especially concerns the values of α and γ, which are determined by the mean incubation period
and the mean duration of infectiousness. We get α = 1/5.2 = 0.192 [23]. For the parameter γ,
the value γ = 1/7 = 0.143 is chosen [6] a bit arbitrarily; in literature, many different values are
proposed. Due to short time interval under consideration, we set δ = 0.

Using these values of α, γ and δ, we now fit the SEIR submodel to the available obser-
vation data. We ignore the compartments H,C and D at first, since their influence on the
overall dynamics of the COVID-19 epidemic is quite limited. We use the total numbers for the
compartment levels with N = 6 · 107 for Italy. With regard to the parameters of the SEIR
submodel, it remains to determine β. During the time interval of interest a lockdown have
become effective, but ahead of the lockdown the evolution of the epidemics is indeed guided by
the original β. We therefore choose a cut-off date t′ for the trajectories and select the value
of β in such a way that the mean square error between the simulation trajectory I(t) and the
corresponding real data is minimized. After doing so for multiple cutoff dates t′, we take the
date t′ together with the associated β value that best fits the data. This gives t′ = 18/03/2020
and β = 0.555. For t ≥ t′, we get a best fit for β = 0.094 (see figure 4).

Note that no real-world data are available for E. The plot contains a second order dis-
continuity when the lockdown takes effect. The level of E decreases immediately after the
discontinuity, while I still increases for some more days. The date t′ = 18/03/2020 is an in-
teresting finding by itself. On the 9th of March 2020, Italy extended the lockdown, which up
to this time has been raised only to some special areas, to a nation-wide lockdown. As the
lockdown takes effect on March the 18th, this gives a delay of 9 days between decision and ef-
fective execution. This validates the proposed delay of ten days. Concerning the reproduction
number R0 = β/γ, the outbreak starts with R0 = 3.88. When the lockdown is set into effect,
the corresponding value is R0 = 0.66 < 1 and so the epidemic vanishes. This gives a reduction
of β by a scaling factor equal to 0.17.

What remains to be done is to fit σ, λ, pa, pc, pf . Remarkably, the predicted number of
hospitalizations seems to exceed the real-world case numbers by far (see Figure 5). One would
expect that hospitalized people are included in the number of infected persons and thus I(t) ≥
H(t). Furthermore, the disease was not that severe that a large part of the infected persons
needed to be hospitalized. However, it should be noted that Italy gives the number of patients
in hospitals as a cumulative number, whereas the number of infections counts the new infections
on a daily base. Beyond that, due to the insufficient availability of test kits in early 2020 —
there were no rapid antigen tests at all — many new infections remained undetected. Hospital
patients, in the contrary, were recorded in full without any unreported cases.

Overall, the model describes the dynamics of the COVID-19 pandemic quite well. The
decrease in β resulting from the countermeasures is appropriately represented as well. Accord-
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ingly, we consider the proposed model as being essentially valid though it was not possible to
validate the part of the model dealing with H,C and D at an appropriate level.

5 Theoretical Analysis

In this section we collect some basic analytical results.

5.1 Stability Analysis

Let us start analyzing stability of the ODE model (1). We will neglect the model extensions
consisting of control unit and frictions. For this purpose, we will take a closer look at the
equilibrium points of model (1) and at the behaviour of the model in the proximity to these
equilibria. Following [27], we focus on disease-free equilibria, linearize the defining equations
and check the sign of the eigenvalues’ real parts.

Due to the structure of the set of equilibrium points P̃ , it is not necessary to take the
equation for compartment D into account. In order to determine the stationary points, every
equation of system (1) is set equal to zero. This gives the equation system

−βI(t)S(t)/N + δR(t) + ν − µS(t) = 0
βS(t)I(t)/N − (α+ µ)E(t) = 0
αE(t)− (γ + µ)I(t) = 0
γ(1− pa)I(t) + λ(1− pf )C(t)− (σ + µ)H(t) = 0
σpcH(t)− (λ+ µ)C(t) = 0
γpaI(t) + σ(1− pc)H(t)− (δ + µ)R(t) = 0

(3)

From the third and the fifth equation in the system shown above, we get

E∗ =
γ + µ

α
I∗ and H∗ =

λ+ µ

σpc
C∗.

Substituting H∗ in the fourth equation and E∗ in the second one leads to

C∗ = − γσpc(1−pa)
λσpc(1−pf )−(σ+µ)(λ+µ)I

∗

=⇒ H∗ = − γ(1−pa)(λ+µ)
λσpc(1−pf )−(σ+µ)(λ+µ)I

∗

and to

I∗
(

βS∗

N − (α+µ)(γ+µ)
α

)
= 0 ⇐⇒ I∗ = 0 ∨ S∗ = (α+µ)N

αβ .

This yields two potential equilibria.

Case I∗ = 0: Due to the case assumption, the last equation of (3) immediately gives R∗ = 0.
Substituting I∗ = 0 and R∗ = 0 in the first equation of (3) yields ν−µS∗ = 0 ⇐⇒ S∗ =

ν/µ. We get P̃ = (ν/µ, 0, 0, 0, 0, 0) as the disease-free equilibrium.

Case S∗ =
(α+ µ)N

αβ
: Substituting the case assumption in the first equation of (3) gives.

R∗ =
(α+ µ)(γ + µ)

αδ

(
I∗ +

N

β

)
− ν

δ
.
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Using this intermediate result, the last equation of (3) can be rewritten as

I∗ =

(
− σγ(1− pc)(λ+ µ)(1− pa)

λ(1− pf ) + (σ + µ)(λ+ µ)
+

αβγδpa − (δ + µ)(α+ µ)(γ + µ)

αβδ

)−1

·

·
(
ναδ + (δ + µ)(α+ µ)(γ + µ)

αδ

)
.

Defining Ẽ, H̃, C̃, R̃ as results of inserting I∗ in the expressions of E∗, H∗, C∗, R∗ gives

P̃ ′ =

(
(α+ µ)N

αβ
, Ẽ, I∗, H̃, C̃, R̃

)
,

as non-disease-free equilibrium.

We focus now on the disease-free equilibrium P̃ . The system (1) is linearized using the Jacobian

matrix J(P̃ ) ∈ MR(6, 6). We obtain Ẋ = JX with X := (S,E, I,H,C,R). The eigenvalues of J

at the point P̃ — in the following referred to as J̃ — can be determined using the characteristic
polynomial

pJ̃(ℓ) = det(J̃ − ℓI) = (ℓ+ µ)(ℓ+ δ + µ)p1p2 (4)

with
p1 = (ℓ+ α+ µ)(ℓ+ γ + µ)− αβ

= ℓ2 + ℓ(γ + 2µ+ α) + (µ2 + µγ + µα+ αγ − αβ)

p2 = (ℓ+ µ+ λ)(ℓ+ µ+ σ)− σpcλ(1− pf )

= ℓ2 + ℓ(σ + 2µ+ λ) + (µ2 + µσ + µλ+ λσ − σλpc(1− pf ))

(5)

We obtain

ℓ1 = −µ

ℓ2 = −(δ + µ)

as roots of the characteristic polynomial (4). Regarding the roots of p1 and p2, we get respec-
tively:

ℓ3,4 =
1

2

(
−(α+ 2µ+ γ)±

√
(α+ 2µ+ γ)2 − 4(µ2 + µγ + µα+ αγ − αβ)

)
ℓ5,6 =

1

2

(
−(λ+ 2µ+ σ)±

√
(λ+ 2µ+ σ)2 − 4(µ2 + µσ + µλ+ λσ − σλpc(1− pf ))

)
.

We already know that ℓ1, ℓ2, ℓ4, ℓ6, ℓ7 are negative and that it holds

ℓ3 < 0 ⇐⇒ β <
µ2 + µγ + µα+ αγ

α
. (6)

We can state that in system (1) the existence of an eigenvalue ℓ = 0 can be avoided. A more
detailed analysis [43] shows that this is realized by the exclusion of the equation related to the
compartment D. Note that an eigenvalue ℓ = 0 would prevent the application of the Hartman-
Grobman theorem, which requires non-zero real parts as a prerequisite for all eigenvalues.
However, it is precisely this theorem that enables us to derive the qualitative behaviour of the
non-linear system from that of the linearised system. We can state that the stability conditions
will change at the critical value β = (µ2 + µγ + µα + αγ)/α. The equilibrium is stable iff (6)
holds.
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5.2 Reproduction Number

The so-called reproduction number R0 [27] gives the average number of new infections in a
fully susceptible population caused by a single infected person. For determining R0, we will
follow the next-generation approach. The idea is to define the so-called next-generation matrix,
which relates the number of infected individuals in the different compartments in consecutive
generations. Then, the reproduction number R0 is given by the spectral radius of the next-
generation matrix.

We study the differential equation system (1) with compartment D being excluded. We
define X as the vector of variables in the infected compartments and Y as the vector of variables
in the non-infected compartments. It holds

X = (E, I)

Y = (S,H,C,R).
(7)

and so
Ẋ = (Ė, İ)

Ẏ = (Ṡ, Ḣ, Ċ, Ṙ).
(8)

According to the method of Van den Driessche and Watmought [27], we split up the right-hand
side of the infected compartments as follows:

Ẋ =

(
βSI/N
αE

)
−
(
(α+ µ)E
(γ + µ)I

)
= F(X,Y )− V(X,Y )

with Fi(X,Y ) as the rate of new infections in compartment i ∈ {E, I} and Vi(X,Y ) as the
remaining transitional term. This decomposition satisfies the following properties:

1. F(0, Y ) = 0 and V(0, Y ) = 0 for Y ≥ 0

2. F(0, Y ) ≥ 0 for all X,Y ≥ 0

3. Vi(0, Y ) ≤ 0 for all Xi ≤ 0

4.
∑

i∈{E,I}

Vi(0, Y ) ≥ 0 for all X,Y ≥ 0

Now we determine the Jacobian matrices F = DXF(X,Y ) and V = DXV(X,Y ) and evaluate

them in the disease-free equilibrium P̃ . After substituting the equilibrium P̃ = (ν/µ, 0, 0, 0, 0, 0)
in the Jacobian matrix, we obtain

F =

0
β

µ(γ + µ)
α 0

 and V =

(
α+ µ 0
0 γ + µ

)

Hence, the linearized system for the infected compartments can be written as Ẋ = (F− V)X.
The next-generation matrix is defined as FV −1 and thus the reproduction number is equal to
R0 = ρ(FV−1) with ρ(A) as the spectral radius of A. Therefore, we obtain

FV−1 =

 0
β

µ(γ + µ)
α

α+ µ
0

 =⇒ R0 = ρ(FV−1) =

√
αβ

(α+ µ)(γ + µ)
.

12
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It holds

R0 < 1 ⇐⇒ αβ

(α+ µ)(γ + µ)
< 1

which is nothing else than condition (6). It shows the dependency ofR0 on the model parameters
α, β and γ.

6 Simulation-based Analysis

In the following we show some results determined by extensive simulations of the ODE model.

6.1 General Remarks

The purpose of a sensitivity analysis is to assess the effects of parameter changes on the outcome.
Concerning the parameter of a differential equation system like (1), [32] defines the sensitivity
of a solution x(t, p) with respect to a parameter p as

Sp(t) =
dx(t, p)

dp
(9)

The time derivative of Sp(t) for the i-th equation fi of system (1) is given by

dSip

dt
=

∂fi
∂p

+

n∑
j=1

∂fi
∂xj

Sjp (10)

Since compartmental models of epidemics are well known and already analyzed in depth, we
will focus on the sensitivity of the parameters of the control unit (see section 3.2). The approach
(10) cannot be applied in a straightforward manner here, though, because the control unit is
not defined based on a differential equation system. Thus, the derivative in definition (9) is
replaced by a finite difference:

Sip(t) =
xi(t, p+ h)− xi(t, p)

h
for i ∈ {1, ..., 7} (11)

6.2 Delay

The sensitivity Siτ for the delay parameter τ is shown in figure 6. It is the highest for τ = 0
across all compartments and it is almost zero for τ > 0. This means that the system answers
quite sensitively on an almost instantaneous reaction, whereas the impact of reactions with
some more delay is significantly damped out.

If γ is large enough, the epidemic dies out and the sensitivity concerning delays becomes
zero. For very large δ, ν or µ, the sensitivity reaches zero as well. In case of pc ≥ 0.35, a
strong sensitivity peak related to D appears. The larger the value of pc, the earlier this peak
occurs. For large values of ν, the trajectory of SDτ (t) may contain a second peak. Concerning
variations of η, one, two or three peaks can be seen in SDτ (t) (see Figure 7). For large η1,
the sensitivity decreases significantly, as at some point no more new infections occur and the
number of deaths can therefore no longer increase. The number of peaks relates to the number
of activated countermeasures.

Figure 8 demonstrates the effects of a variation of the delay parameter τ between 0 —
meaning instant intervention — and 1000 days. For reasons of simplicity, we restrict our con-
siderations to a single control rule. Concerning countermeasure efficiency, η = 0.5 is assumed.
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Figure 6: Sensitivities of the delay parameter for S (left) and E (right). The sensitivity of I
behaves analogous to SEτ , whereas the sensitivity of H, C, R, and D behaves similar to SSτ

Figure 7: Sensitivity SDτ for varying η1

In the general, a large delay can be partially counteracted with choosing a small threshold.
In case of a slowly evolving epidemics with long duration, the weights wI , wH and wC have
only minor influence on the behaviour of the system. Larger values of the weight wD optimize
the final outcome of the epidemics related to the number of casualties. Concerning observation
correctness, we observe a phase transition of the system behavior in the region ε ∈ [0.6, 0.7].

α = 0.3 γ = 0.01 σ = 0.5 pa = 0.12 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.79 µ = 0.01

η = 0.5

Figure 8: Correlations susceptibles-delay and infected-delay respectively.
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6.3 Weights of the score function

The compartments E and I typically have significantly lower sensitivities with regard to all
four weight parameters than H, C, D, R or S, especially for large t. The sensitivity concerning
the weight wI (see Figure 9) reaches a maximum for wI = 0.1, but it is close to zero for other
values of wI . Often, a small peak for t ≈ 7100 days can be observed. Variations of the delay τ
will typically change the value of wI with the highest sensitivity. In case of τ = 10, for example,
the sensitivity is the highest for wI = 0.1, whereas for τ = 20 the maximum can be found at
wI = 0.3.

Figure 9: Sensitivity functions SSwI
(left) and SEwI

(right). The sensitivity function SIwI

behaves analogous to SEwI
.

In general, the sensitivities for wH are smaller than the ones for wI but most of the time
non-zero. Increasing the delay τ shifts specific sensitivity values to later time points. The
sensitivity concerning the parameter wC is similar to wH . A larger δ increases the similarity of
the sensitivity plots describing the behavior of wC . For wD, the sensitivities are larger than for
wC and wH .

Simulation experiments for a variety of weight values (see Table 3) show that the number
of deaths becomes minimal with (wI , wH , wC , wD) = (1, 0, 0, 0). This result also indicates that
an early intervention is crucial: When choosing (1, 0, 0, 0), we focus on I that reaches their
maximum earlier than H,C or D. This intervention strategy is very stable under changes of
the situation. With larger thresholds Ti, though, weight combinations with non-zero wD become
preferable since the death toll have had time to rise. Concerning the observation correctness ε,
an analogous statement can be made.

6.4 Thresholds of the score function

The sensitivity concerning threshold T1 is shown in figure 10. We observe large values for
(T1, T2, T3) = (0, 0.1, 1) and for (T1, T2, T3) = (0, 0.9, 1). For larger values of β, pc and wI ,
the sensitivity becomes large for (T1, T2, T3) = (0, 0.2, 1). For large µ, additional threshold
combinations show high sensitivity value.

Variations of T2 or of T3 are typically associated with sensitivities close to zero. This
means that additional countermeasures beyond the initial intervention usually do not change
the system behavior significantly. Concerning a minimization of the death toll, settings like
T1 = 0, T2 = 0.01, T3 = 0.02 give typically near-optimal results because of an almost immediate
intervention.
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wI wH wC wD D
1 0 0 0 0.000600927689137684
0.9 0.1 0 0 0.000606317131184192
0.9 0 0.1 0 0.0006063397418061638
0.9 0 0 0.1 0.000606368228860041
0.8 0.2 0 0 0.0006173509135282914
0.8 0.1 0.1 0 0.0006174155309946262
0.8 0 0 0.2 0.0006174250868030513
0.8 0.1 0 0.1 0.0006174262724826221
...
0 0.2 0.8 0 0.4430133790669686
0 0.1 0.9 0 0.4430133790669686
0 0 1 0 0.4430133790669686

α = 0.3 γ = 0.01 σ = 0.5 pa = 0.79 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.12 µ = 0.01

(wI , wH , wC , wR) as above (T1, T2, T3) = (0.01, 0.05, 0.1)
τ = 0, ε = 0.8 (η1, η2, η3) = (0.5, 0.25, 0)

Table 3: Combination of weights (wI , wH , wC , wD) and resulting number of deaths in a simu-
lation after t = 10000 with the given parameters

Figure 10: Sensitivity function SST1
, SET1

, SIT1
, SDT1

. For the parameter T1, the sensitivity
functions SHT1

, SCT1
and SRT1

show a behaviour very similar to SIT1
.
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6.5 Effectiveness of the lockdown

For η1 = 0 (complete lockdown), the compartments S,H,C,R,D react highly sensitive. SEη1

and SIη1
have small values, except for some peaks. This indicates that the system’s behaviour

changes fundamentally at η1 = 0. Higher thresholds result in higher peaks, because in this way
an intervention is done only at later times, at which the epidemic is already more advanced.

For η2, the sensitivity behavior depends on the value of η1. If the first intervention is
already reducing the number of infections significantly, the second countermeasure may not
even be triggered at all. For e.g. η1 = 0.8, we can observe a high sensitivity for η2 = 0.1 or
η2 = 0, but η1 = 0.5 gives an almost vanishing sensitivity. In principle, the results for η2 can
also be transferred to η3. A special characteristic is a high sensitivity for η3 = 0.1 near to the
end of the epidemic. Figure 13 shows how the number of deaths depends on η1. A small η1
gives also a small overall death toll. Changes of β or γ may alter this behaviour significantly
in accordance to our stability analysis results.

6.6 Observation Correctness ε

The sensitivity of the system concerning observation correctness ε is depicted in Figure 11.
The three values ε = 0.4 (brown), ε = 0.6 (pink) and especially ε = 1.0 (blue) stand out. The
entirety of possible behaviors of the system is probably the richest for these three values. Other
values of ε become dominant, though, when the values of the system parameters are changed.
As an example, consider the effects of a decrease of pc from 0.75 to 0.4 in Figure 12.

The effects of an observational error ε on the course of an epidemic are shown in Figure 14.
The overall system does not react sensitively on changes of the parameters α, δ, σ, λ, pa or pc.
Conversely, a variation of the parameters pf , γ or β may alter the evolution significantly.

7 Limitations of Model and Analysis

Several simplifications have been applied in order to make the epidemics model tractable. We
neglect, for example, the existence of concurrent virus strains or the heterogeneity of the popula-
tion. Only a rudimentary set of frictions is taken into account. In this respect the consequences
of various frictions will be of interest. The paper intents to discuss some basic ideas on how to
deal with frictions rather than to perform an analysis of the effects of specific frictions, though.

The analysis of the control unit function deserves more attention. The same holds for
deriving control strategies from the properties of the underlying epidemics model. A candidate
approach for deriving such strategies would be evolutionary optimization.

Variants of the score function and of the rule system will eventually modify the results. One
may ask, which version is preferable from the viewpoint of controllability and robustness. It is
reasonable that in different regions of the parameter space, different rule systems may have to
be preferred. The investigation of potential phase transitions of systems behavior may also to
be subject of future research.

8 Discussion and Outlook

The paper investigates strategies of epidemics management in presence of frictions. The in-
clusion of frictions seems to be mandatory for discussing the behavior of a realistic control
component, because the preferable mix of countermeasures may depend on the scale of the
frictions. Furthermore, different countermeasures may be affected by different frictions in a
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Figure 11: Sensitivity function SSε. The behaviour of SEε, SIε, SHε, SCε, SRε, SDε is quite
similar to that of SSε.

Figure 12: SDε for pc = 0.4
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α = 0.3 γ = 0.01 σ = 0.5 pa = 0.79 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.12 µ = 0.01

Figure 13: Number D of cummulative deaths after 10000 time steps in dependence of the
parameter η1

α = 0.3 γ = 0.01 σ = 0.5 pa = 0.12 pf = 0.33 ν = 0.01
β = 0.05 δ = 0.15 λ = 0.5 pc = 0.79 µ = 0.01

η = 0.5

Figure 14: Correlation susceptibles-error and infected-error respectively.
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different way. To be useful for predictive purposes, however, a much broader range of frictions
needs to be analyzed than here.

The model may be extended such that multi-domain aspects are taken into account. Coun-
termeasures, which are useful for containing epidemics, may at least partially counteracting
economic welfare, individual freedom, psychological welfare and so on [4, 8]. Accordingly, coun-
termeasures are not effective from the beginning in our model but triggered depending on the
current situation. The paper focuses on COVID-19; the state of affairs in case of other diseases
is an open question. The discussion of the influence of additional details like the interplay
between a control unit and a population with only partial compliance to the regulations raised
by the control unit would be of interest as well. A disadvantageous outcome of an outbreak
may not only be caused by inappropriate countermeasures, but also by the unwillingness of the
population to follow suitable countermeasures.

Based on the considerations in the paper, it may be feasible to refine the organizational
processes that serve as primary bottleneck in intervention management. Furthermore, decision-
makers tasked with choosing appropriate countermeasures may perhaps be able to enhance the
quality of their predictions. Last but not least, our considerations are not only applicable to
epidemic contexts. The fundamental approach outlined here is adaptable to various other crisis
management scenarios as well.
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