
EasyChair Preprint
№ 14733

SUDS: a Simplified U-Net Architecture with
Depth-Wise Separable Convolutions

Vlad-Constantin Ionete and Cosmin Marsavina

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 6, 2024



SUDS: A Simplified U-Net Architecture with
Depth-wise Separable Convolutions
Vlad-Constantin Ionete

Department of Computers and Information Technology
University Politehnica of Timisoara, Romania

vlad.ionete@student.upt.ro

Cosmin Marsavina
Department of Computers and Information Technology

University Politehnica of Timisoara, Romania
cosmin.marsavina@upt.ro

Abstract—Medical image segmentation is one of the most
important topics in the field of computer vision and plays a
crucial role in computer-aided diagnosis. U-Net paved the way for
a series of variants that took advantage of the key characteristics
of this network. In this article, several features proposed in
different variants of U-Net are adapted and experimented upon
to create a new architecture that maintains the idea of a U-
shaped structure. The proposed architecture takes advantage of
the efficient depth-wise separable convolution, but with a twist.
Instead of using the pointwise convolution as the last step in the
depth-wise separable convolution, it utilizes the so-called Ghost
Module. This results in a highly efficient network with a reduced
complexity, that still has excellent segmentation performance.
We compared SUDS with U-Net and its variants across multiple
segmentation tasks from two categories, skin lesion segmentation
and colonscopy segmentation. Experiments demonstrate that
SUDS has similar segmentation accuracy compared to the other
networks, while the number of parameters and floating-point
operations are greatly reduced.

Index Terms—computer vision, medical image segmentation,
U-Net

I. INTRODUCTION

Medical imaging devices such as MRI, CT, X-ray, and
colonoscopy probing equipment are crucial for clinical diag-
nosis. A key technique in this area is medical image segmen-
tation, which heavily relies on advancements in Convolutional
Neural Networks (CNNs). Starting from the pioneering CNN,
LeNet by LeCun et al. [1], there have been significant devel-
opments with networks such as AlexNet by Krizhevsky et al.
[2], VggNet by Simonyan and Zisserman [3], and GoogleNet
by Szegedy et al. [4]; these laid the groundwork for later
innovations, such as ResNet [5] and EfficientNet [6].

In recent years, CNNs have excelled in classifying each
pixel of an image, thereby enhancing image segmentation
capabilities as noted by Wolterink et al. [7] in 2017. A
landmark development in medical image segmentation was
the introduction of U-Net [8], which has become foundational
for many biomedical segmentation tasks. Following U-Net,
various adaptations have emerged, thus enhancing its capa-
bilities. For instance, TransUNet [9] combines Transformers
with U-Net to boost segmentation accuracy. The 3D U-Net
model adapts the U-Net architecture for 3D imaging, thereby
improving volumetric segmentation with fewer annotations.
Attention U-Net [10] integrates an attention mechanism, par-
ticularly aiding in the segmentation of the pancreas.

It is imperative to also acknowledge other influential net-
works in image segmentation such as DeepLab [11], which
utilizes atrous convolution and CRFs for high-resolution seg-
mentation, and Capsule Networks [12], which offer unique
methodologies in this field. More details on U-Net and its
significant variants will be discussed in subsequent sections.

II. RELATED WORK

The advancement of semantic segmentation techniques,
particularly in the realm of medical imaging, has seen a
remarkable trajectory spurred significantly by the advent
and continuous refinement of Convolutional Neural Networks
(CNNs). A pivotal moment in this journey was the introduction
of the U-Net architecture by Ronneberger et al., which was
designed specifically for biomedical image segmentation. This
architecture, with its innovative contracting and expanding
paths, not only set new benchmarks for segmentation accuracy,
but also introduced a novel way of utilizing data augmentation
for training on limited datasets.

A. Evolution of U-Net: from foundations to enhanced variants
The foundational U-Net architecture laid the groundwork

for subsequent research aimed at addressing the unique chal-
lenges in medical image segmentation. Its design was par-
ticularly revolutionary for allowing end-to-end training with
very few images, leveraging data augmentation to significantly
enhance the model’s performance. This breakthrough has
catalyzed a wave of innovations, seeking to adapt and refine
the U-Net architecture for broader applications and improved
efficiency.

Hasan and Linte’s development of U-NetPlus [13] is a no-
table example of these efforts. By integrating a pre-trained en-
coder and re-envisioning the decoder through nearest-neighbor
(NN) interpolation for upsampling, U-NetPlus is aimed at
enhancing segmentation performance in surgical instrument
detection. This adaptation was particularly geared towards
overcoming challenges inherent in robotic-assisted surgeries
(such as occlusions or varying illumination), thus demon-
strating the potential of deep learning in complex, dynamic
environments.

B. Computational efficiency in semantic segmentation
A critical aspect in the evolution of segmentation models has

been the emphasis on computational efficiency. The introduc-



tion of depth-wise separable convolutions, as explored in vari-
ous studies, represents a significant stride towards reducing the
computational burden of segmentation tasks. These methods
have proven effective in decreasing the number of parameters
and the computational requirements, thereby facilitating faster
processing times without compromising accuracy. This is
crucial for applications requiring real-time analysis, such as
intraoperative surgical assistance.

C. Towards adaptive and resource-efficient architectures

The integration of depth-wise separable convolutions within
U-Net architectures, as exemplified in the study performed
in ”An Image Deblurring Method Using Improved U-Net
Model” [14] marks a significant moment in the pursuit of
more efficient and effective semantic segmentation models,
particularly for medical imaging applications. This approach
is complemented by the recent development of Half-UNet, a
model that embodies the quest for balancing model complexity
with computational efficiency, thereby addressing some of the
most pressing challenges in medical image analysis.

D. Depth-wise separable convolutions and U-Net enhance-
ments

Depth-wise separable convolutions offer a computationally
efficient alternative to standard convolutions by decoupling
the filtering and combining the phases of the convolution
process. This results in a significant reduction in both the
number of parameters and the computational cost whilst also
addressing the vanishing gradient problem, thereby making
it an ideal choice for tasks that require real-time processing
or that operate within resource-constrained environments. The
”An Image Deblurring Method Using Improved U-Net Model”
article demonstrates how integrating these convolutions into
a U-Net framework can lead to substantial improvements in
processing efficiency without sacrificing the model’s ability
to effectively perform image deblurring tasks, a common
requirement for enhancing the usability of medical imagery.

E. Half-UNet: streamlining U-Net for efficiency

In parallel with these developments, the concept of Half-
UNet [15] has emerged as another innovative approach to
streamline the U-Net architecture. This variant seeks to main-
tain the essence of U-Net’s design (namely its ability to
capture detailed contextual information while ensuring precise
localization) within a more compact and computationally
less demanding framework. By rethinking the architecture
to include fewer convolutional layers and by optimizing the
network’s path flows, Half-UNet aims to offer a solution that
is not only adept at handling segmentation tasks but also
markedly more efficient in terms of computational resource
utilization.

F. Bridging the gap between theory and application

Both the integration of depth-wise separable convolutions
into U-Net and the conceptualization of Half-UNet underscore
a broader trend in medical image analysis, namely the drive

towards creating models that are not only powerful in terms
of segmentation accuracy but also optimized for speed and
efficiency. This is particularly crucial in clinical settings, where
the ability to quickly and accurately process images can sig-
nificantly impact diagnostic workflows and patient outcomes.

The advancements brought forward by these models open
new avenues for research, particularly in exploring further
optimizations that can reduce computational load without
compromising accuracy. The continuous refinement of U-Net
and its variants reflects a tendency towards creating more
adaptive and resource-efficient architectures. Such advance-
ments underscore the ongoing efforts to balance the trade-
offs between model complexity, computational demands, and
segmentation performance.

III. PROPOSED MODEL

A. Model structure

The SUDS-Net architecture represents a modern adaptation
of the U-Net model, specifically designed for semantic image
segmentation with a keen focus on enhancing computational
efficiency. As shown in Figure 1, the proposed architecture is
symmetric, featuring an encoder-decoder framework that in-
cludes Residual Depth-wise Separable Blocks and the innova-
tive Ghost Module. The network is characterized by its depth-
wise separable convolutions for efficient feature extraction and
the Ghost Module that further optimizes the computational
cost by generating additional feature maps through fewer com-
putations. The depth-wise separable convolutions and Ghost
Module are not present in the architectural scheme because
they are integrated in the Residual Depth-wise Separable
Blocks, but will be presented later on. The activation function
used is ReLU and the kernel size is 3× 3.

The encoder accomplishes the extraction of image infor-
mation in two stages. In the first stage the model processes
the input, which in this example is assumed to be an RGB
image. This stage is also the first encoder block; the block
applies a Residual Depth-wise Separable Convolution (with
potential Ghost Module enhancements) to increase the channel
depth from 3 to 64 while capturing spatial features, effectively
preparing the feature maps for deeper processing. The block is
followed by a Max Pooling layer to reduce spatial dimensions
by half, thus enhancing the model’s ability to capture higher-
level features at reduced resolutions. The second stage or
second encoder block is similar to the first one; this block
further processes the feature maps, doubling the channel depth
to 128 (from 64), and is also followed by Max Pooling. The
bridge is tasked with synthesizing the highest-level features
extracted by the encoder. It concentrates on capturing the
essence of the input image’s content, which is crucial for the
decoder to generate a precise segmentation map.

Unlike traditional bottleneck layers that might simply com-
press features, the bridge in SUDS-Net also enhances them
through depth-wise separable convolutions and the Ghost
Module. This ensures that the transition to the decoder is
not merely a passing of information but an active enhance-
ment of it. In this specific architecture, the bridge can be



Fig. 1: The architecture of the model

considered an extension of the encoder’s feature extraction
process, albeit with a distinct purpose of synthesizing the
highest-level features before the decoding process begins.
The bridge increases the depth from 128 channels to 256.
The decoder reconstructs the segmentation map from the
encoded feature maps, progressively upscaling and merging
features from the encoder through skip connections. This
happens in two stages; the first decoder stage begins with
the bridge output (assumed to be 256 channels based on the
bridge’s final output). It upsamples the feature maps using
transposed convolution, reducing the channel depth to 128 to
increase spatial resolution. It concatenates these upsampled
features with the corresponding encoder output from the
second stage (128 channels), effectively doubling the channel
depth temporarily before processing. After the concatenation
the output is 384 channels. Everything is processed through a
Residual Depth-wise Separable Block with Ghost Module. The
second stage follows a similar pattern to the first one, further
upsampling and processing the feature maps. It upsamples
the input channels (384) from the previous decoder block
and concatenates them with the corresponding output channels

from the encoder block (64), resulting in 448 channels. The
operations are performed by a Residual Depth-wise Separable
Block with Ghost Module that further refines the segmentation
map, upsampling and fusing features as before, in preparation
for the final segmentation output.

The final layer maps the decoder output to the desired
number of classes for segmentation, thus producing the final
segmentation map. It is represented by a convolution layer that
takes as input the output from the last decoder block (448) and
it outputs the number of classes for the model.

B. Important features

The Simplified U-Net with Residual Depth-wise Separa-
ble Blocks (SUDS-Net) introduces a refined architecture for
semantic image segmentation, drawing inspiration from the
foundational elements of Half-UNet and advancements in
depth-wise separable convolutions (as demonstrated in the
Improved U-Net Model for deblurring). Our model leverages
these concepts to enhance computational efficiency while
aiming to maintain or improve the segmentation accuracy of
traditional U-Net models.



1) Encoder-decoder framework: At the heart of SUDS-Net
lies an encoder-decoder framework enhanced with depth-wise
separable convolutions. This design choice is motivated by
the need to reduce computational complexity and the model’s
parameter count, a principle that is central to the design of
Half-UNet.

2) Depth-wise convolution: Applies a single filter per input
channel, significantly reducing the computational complexity
compared to standard convolutions, as shown in Figure 2.

Fig. 2: The depth-wise separable convolution structure

For an input feature map X with [H,W,Cin], the depth-
wise convolution operation can be defined as:

DW (X) = X ∗Kdw (1)

3) Pointwise convolution replaced by Ghost Module: Tra-
ditionally, the output of the depth-wise convolution is further
processed by a pointwise convolution to combine the channel-
wise features. In SUDS-Net, this step is innovatively replaced
by a Ghost Module.

4) The Ghost Module: Is a novel component introduced
in Half-UNet. In our architecture the Ghost Module replaces
the pointwise convolution, aiming to generate more feature
maps through fewer computations. The module operates by
generating ”ghost” feature maps through cheap operations,
thereby reducing the number of parameters and computational
demands.

GM(P ) = [P ∗Kprimary, ϕ(P ∗Kcheap)] (2)

where P is DW (X), Kprimary is the kernel for the primary con-
volution within the Ghost Module, Kcheap represents the kernel
for cheaper operations to generate additional feature maps, and
ϕ is a cheap operation (such as a depth-wise convolution). The
output of GM is the concatenation of the primary convolution
output with the transformed cheap operation output.

5) Residual Depth-wise Separable Block: Allows the input
to bypass the depth-wise (as seen in Figure 3) and pointwise
(or Ghost Module) convolutions, adding it directly to the
block’s output to facilitate gradient flow and mitigate the
vanishing gradient problem. If X is the input and F (X)
represents the combined operation of depth-wise convolution
followed by the Ghost Module, then the Residual Depth-wise
Separable Block output can be represented as:

R(X) = F (X) +X (3)

assuming the dimensions of F (X) and X are compatible
for addition. If dimensionality needs adjustment, a 1 × 1
convolution C1x1 is applied to X before addition:

R(X) = F (X) + C1x1(X) (4)

Combining these components, the operation of a Residual
Depth-wise Separable Block with a Ghost Module, denoted
as RDSBGM(X), can be formalized as:

RDSBGM(X) = H(X) +

{
X, if Cin = Cout

C1×1(X), otherwise
(5)

where Cin and Cout are the input and output channel sizes,
respectively and

H(X) = ReLU(GM(DW (X))) (6)

While Half-UNet focuses on streamlining the U-Net archi-
tecture for general efficiency, SUDS-Net extends these princi-
ples specifically towards enhancing the model’s performance
in segmentation tasks that benefit from reduced computational
complexity.

Fig. 3: Residual Depth-wise Separable Block

C. Performance

1) Number of parameters: The number of parameters in
a convolutional layer is determined by the size of its kernels
and the number of input and output channels. For a standard
convolutional layer with kernel size Kw ×Kh, input channels
Cin and output channels Cout, the numbers of parameters is
given by:

Params = (KW ·Kh · Cin + 1) · Cout (7)

The ”+1” accounts for the bias term for each output channel,
which can be omitted if bias is set to False. For a depth-wise
convolutional layer, since there is only one filter per input
channel and no mixing of channels, the number of parameters
is significantly less:

Paramsdepth-wise = Kw ·Kh · Cin (8)



For the Ghost Module with primary and cheap operations the
formula for parameters is the following:

ParamsGhost = Paramsprimary + Paramscheap (9)

where Paramsprimary is the number of parameters for the
primary convolutions in the Ghost Module while Paramscheap
is the number of parameters for cheap operations (like depth-
wise convolutions) in the same module. For a residual block,
the number of parameters is the sum of the parameters from
the depth-wise separable convolutions with a Ghost Module
and those from the 1 × 1 convolution if used to match the
channel dimensions.

Paramsresidual = Paramsdepth + ParamsGhost + Paramsshort (10)

where Paramsshort (short stands for shortcut) is calculated
similarly to a standard convolution:

Paramsshort = Cin · Cout if Cin ̸= Cout or stride ̸= 1 (11)

2) FLOPs: The FLOPs for a layer are calculated by con-
sidering the number of multiplications and additions for each
operation in the forward pass. For a standard convolutional
layer, the FLOPs can be approximated as:

FLOPs = (2 ·Kw ·Kh · Cin − 1) ·Hout ·Wout · Cout (12)

Here Hout and Wout represent the height and width of the
output feature map and the factor of 2 accounts for both
multiplication and addition operations in the convolution. We
subtract 1 if there is no bias.

For the depth-wise convolutions, FLOPs are computed as:

FLOPsdepth-wise = Kw ·Kh · Cin ·Hout ·Wout (13)

For the Ghost Module, FLOPs are calculated as:

FLOPsGhost = FLOPsprimary + FLOPscheap (14)

For the primary operation, the formula for FLOPs is:

FLOPsprimary = (2 ·K2 ·Cin − 1) ·Hout ·Wout ·Cprimary (15)

For the cheap operation, the formula is:

FLOPscheap = (2 ·K2
dw ·Cprimary−1) ·Hout ·Wout ·Ccheap (16)

IV. DATASETS, EQUIPMENT AND TECHNOLOGIES USED

We validate our network model using two public datasets, as
shown in Table I. Even though there are relatively few images
in each dataset, the model works better without performing
data augmentation. This will be shown in the following section
which addresses results.

The ISIC 2018 ([16], [17]) dataset is a comprehensive
resource for the development and benchmarking of machine
learning models in the domain of dermoscopy image analysis,
particularly for tasks related to skin lesions. Released by the
International Skin Imaging Collaboration (ISIC), the dataset
has been instrumental in several challenges aimed at advancing
research in melanoma detection. The ISIC 2018 dataset is part
of a series of annual challenges that provide a platform for
participants to test their models against a standard benchmark.

The dataset features a large-scale collection of dermoscopy
images that can be used for different tasks, including lesion
segmentation (Task 1) and lesion attribute detection (Task 2);
our study focuses on Task 1, the lesion segmentation task. It
includes 2594 dermoscopic lesion images, each paired with a
corresponding binary mask indicating the primary skin lesion’s
location. The input images are in JPEG format and have a
unique 7-digit identifier, while the response data are binary
mask images in PNG format. The goal of Task 1 is to sub-
mit automated predictions of lesion segmentation boundaries
within the dermoscopic images. The challenge emphasizes that
each lesion image contains exactly one primary lesion and any
other pigmented regions or markings should be disregarded.

For training, participants have access to the images and
the ground truth data. The ground truth segmentations were
reviewed and curated by dermatologists and created using
various methods, including fully-automated algorithms, semi-
automated techniques, and manual tracing. The data is split
into 2594 images for the training set, 100 for the validation
set and 1000 images for the test set.

The CVC-ClinicDB [18] dataset is a collection of 612 high-
resolution images (384x288 pixels) from 31 colonoscopy se-
quences, specifically curated for medical image segmentation
tasks. This dataset is particularly focused on the detection
of polyps in colonoscopy videos. Each image in the dataset
comes with a corresponding annotation mask that delineates
the polyp, providing essential ground truth for segmentation
algorithms. Researchers and developers commonly use the
CVC-ClinicDB dataset to develop and test algorithms for
automated polyp detection, which is a crucial task in the
early diagnosis and treatment of colorectal cancer. The dataset
serves as a benchmark in the field of medical image analysis,
allowing for the comparison of different segmentation models
in terms of performance.

Given that the dataset contains images with pixel-level
semantic segmentation annotations, it is well-suited for deep
learning models designed to understand and interpret visual
data within the medical domain. The dataset provides a
realistic challenge for models due to the variability in polyp
appearance and size, as well as the complexities of the internal
structures visible through colonoscopy imagery. The data does
not come split into training, validation and test data. For our
experiments, we split the data as follows: 427 images for
training, 123 for validation and 62 for testing. This dataset
is freely available on the Dataset Ninja website.

The training of the model was conducted on a gaming laptop
equipped with a NVIDIA RTX 3070 GPU, featuring 8GB of
VRAM. The upcoming section will demonstrate that, despite
utilizing a less powerful GPU, our architecture achieves good
results (comparable to established U-Net variants). It is antic-
ipated that with superior hardware the model should exhibit
even more pronounced improvements over the baseline. The
model was developed with a minimalist setup (starting from
the original U-Net) using Python, with PyTorch as the only
framework employed.



TABLE I: Datasets and their characteristics

Dataset Images Input size Provider
ISIC 2594 1022 x 767 ISIC
CVC 612 384 x 288 CVC

V. RESULTS

A. Experimental study details

As detailed in the preceding discussion, our architecture
underwent training on two distinct datasets. To ensure a
fair evaluation, all the networks were trained using Adaptive
Moment Estimation (Adam) across differing epochs (25 for the
ISIC dataset and 60 for CVC) with an initial learning rate set
to 0.001. Training involved the use of mini-batches comprised
of 4 images each and the Cross-Entropy Loss Function was
utilized as the loss criterion.

The datasets prepared for the comparison with the other
networks include data augmentation and L2 regularization
was applied across all models barring our own architecture.
Interestingly, subsequent analysis revealed that data augmen-
tation and regularization, while commonly employed, may
not be necessary and could potentially impair our model’s
performance. This observation will be further elaborated upon
in the following sections, thus highlighting our model’s unique
approach and its implications for overall effectiveness.

B. Evaluation indicators

In this study, the segmentation performance is evaluated
through three metrics: Intersection over Union, sensitivity and
specificity.

Intersection over Union (IoU) is a metric used to evaluate
the accuracy of an object detector on a particular dataset. It is
often utilized in computer vision tasks to measure how well a
predicted bounding box (or segmentation mask) overlaps with
the ground truth bounding box (or mask). IoU is a simple
yet powerful metric that quantifies the size of the overlap
between two shapes. It is defined as the size of the intersection
divided by the size of the union of the two shapes. Given
two sets A and B where A represents the predicted bounding
box or segmentation mask, and B represents the ground truth
bounding box or mask, the IoU is defined as:

IoU(A,B) =
|A ∩B|
|A ∪B|

(17)

where |A∩B| denotes the area of overlap between the two sets
and |A∪B| denotes the combined area of A and B (including
their overlap).

Sensitivity, also known as recall or the true positive rate,
is a measure of the proportion of actual positive cases that
are correctly identified by the model. It represent a key metric
in many fields, especially in medical diagnostics where it is
important to identify as many true cases of a condition as
possible. Mathematically, sensitivity is defined as:

Sensitivity =
TP

TP + FN
(18)

Specificity, also known as the true negative rate, measures
the proportion of actual negatives that are correctly identified.

TABLE II: Model performance comparison: parameters,
FLOPs and IoU

Architecture Params FLOPs IoU ISIC IoU CVC

U-Net 31.04M 11x 0.7754 0.6534
DC-UNet 10.07M 43x 0.7812 0.6782
Half-UNet 0.21M 1x 0.7632 0.6631
SUDS 0.23M 1x 0.7834 0.6720

TABLE III: Model performance comparison: sensitivity and
specificity

Architecture Sensit ISIC Sensit CVC Spec ISIC Spec CVC

U-Net 0.9211 0.8475 0.9947 0.9945
DC-UNet 0.9415 0.8706 0.9950 0.9949
Half-UNet 0.9338 0.8206 0.9934 0.9923
SUDS 0.9432 0.8645 0.9952 0.9948

It is also a critical metric in settings where the cost of false
positives is high. In the context of medical testing for example,
specificity indicates the likelihood that a test can correctly
identify the individuals without a disease when they are truly
disease-free. This metric helps minimize the risk of incorrectly
diagnosing healthy patients as sick. Mathematically, specificity
is defined as:

Specificity =
TN

TN + FP
(19)

C. Experimental results

In our comparative study, we scrutinize the efficacy of
the SUDS framework against U-Net and its derivatives, par-
ticularly focusing on the segmentation of skin lesions and
colonoscopies. We utilize the model’s parameters and floating-
point operations (FLOPs) as metrics to gauge the architec-
tural complexity and computational demands. Concurrently,
Intersection over Union (IoU) serves as the benchmark for
segmentation prowess. As delineated in Tables II and III, the
empirical data shows the superior performance of SUDS over
all U-Net variants in skin lesion segmentation.

SUDS is an architecture that is less complex, as evidenced
by the significantly fewer parameters (0.23M compared to
31.04M for U-Net and 10.07M for DC-UNet) and the minimal
computational cost, quantified through an identical FLOPs
index to Half-UNet’s (1x). However, the model does not
compromise on performance, achieving an IoU of 0.7834
which is marginally better than DC-UNet’s 0.7812 and U-
Net’s 0.7754. While DC-UNet comes close to SUDS in
terms of performance benchmarks, its complex architecture
and longer training times represent notable drawbacks. In
particular, for the CVC dataset DC-UNet edges ahead with a
marginally higher IoU (0.6782 vs. 0.6720). However, this mi-
nor improvement does not fully justify its substantially greater
complexity, which becomes a hindrance when dealing with
datasets featuring intricate or less distinct patterns. In contrast,



SUDS exemplifies the balance between model simplicity and
effective performance. It achieves this without the extensive
computational demands seen in more complex models such
as DC-UNet, thereby showcasing the potential of streamlined,
efficient architectures in medical image segmentation tasks.
The reduction in parameters by over 97% from U-Net, without
a significant drop in IoU, showcases the model’s refined effi-
ciency. This suggests that SUDS captures the essential repre-
sentational power necessary for segmentation tasks without the
encumbrance of computational intensity typically associated
with deeper or wider network architectures. These results
are indicative of our model’s efficiency, where it maintains
high fidelity in segmentation with substantially reduced com-
putational overhead. SUDS embodies an optimized trade-off
between network complexity and performance efficacy.

In the conducted experiments, we assessed various con-
figurations of our model against each other with regard to
their performance on the provided datasets. An intriguing
observation was noted: the model devoid of data augmentation
and L2 regularization demonstrated superior performance over
its counterparts. Upon examining Table IV, several aspects
regarding the enhanced performance of the ”clean” model were
observed:

• Intersection over Union (IoU): a substantial improve-
ment in IoU is evident for the clean model (0.7834)
when juxtaposed against the augmented variant (0.6410).
IoU is a pivotal metric in the domain of segmentation,
offering a quantifiable measure of the overlap between the
predicted segmentation and the ground truth annotation.
The elevated IoU for the clean model suggests a better
alignment with the ground truth, thereby reflecting an
improved segmentation accuracy.

• Sensitivity: The clean model also exhibits an enhanced
sensitivity score (0.9432) compared to the augmented
one (0.7345), thus indicating its proficiency in correctly
identifying pixels pertaining to the region of interest.
This increased sensitivity is of particular importance in
medical image analysis, wherein the omission of critical
regions could lead to dire repercussions.

• Specificity: Both models achieved commendable speci-
ficity scores; however, the clean model substantially
outperformed the augmented one (0.9952 vs. 0.8834).
Specificity is also a vital metric, ensuring the model’s
precision in segmenting only the objects of interest and
mitigating the misclassification of background elements.
The superior specificity of the clean model proves a
more discerning segmentation capability, thus potentially
reducing the number of false-positive.

These findings suggest that for the specific datasets and
tasks in this study, using a less complex architecture (with-
out data augmentation and L2 regularization) may result in
more accurate segmentation outcomes. It highlights the need
for a nuanced approach to model selection where additional
complexities such as data augmentation are carefully weighed
against their actual impact on model performance.

TABLE IV: Performance metrics for ISIC models

Model Best IoU Sensitivity Specificity

SUDS CLEAN 0.7834 0.9432 0.9952
SUDS DATA AUG 0.6410 0.7345 0.8834

D. Qualitative results

The segmentation performance of SUDS, DC-UNet, Half-
UNet, and U-Net is also assessed from a qualitative perspective
(Figure 4). The images make it abundantly evident that the
SUDS model is able to precisely determine the limits of
segmented parts. When compared to the other models, SUDS
offers segmentation boundaries that are exact and accurate,
very close to the ground truth.

The precision and thoroughness of the outlines generated
by SUDS are especially remarkable. The SUDS segmentation
ground truth has a higher level of clarity and comprehensive-
ness, thus indicating that the model effectively captures the
fine details and boundaries of the segmented areas. In striking
contrast, Half-UNet, UNet and DC-UNet show less accuracy
and more fragmentation in their segmentation borders.

Although computationally efficient, Half-UNet’s segmen-
tation clearly misses complex details and shows a degree
of smoothness that might hide significant boundaries. U-Net
surpasses Half-UNet in several aspects, but it still has issues
in achieving precision in complex regions. Even though DC-
UNet is more complicated, it does not consistently surpass
SUDS, especially in terms of preserving the integrity of
segmentation contours.

The improved efficiency of SUDS can be credited to its
optimized structure which, despite having fewer parameters
and lower processing demands, is able to attain a higher level
of accuracy in capturing the subtle details of the target areas.
The architectural efficiency results in improved segmentation
quality, as illustrated in Figure 4.

VI. DISCUSSION

Our findings indicate that SUDS outperforms U-Net and
its variants in terms of segmentation efficiency. The model
demonstrates versatility across different segmentation tasks,
as evidenced by its performance on the two distinct datasets
used in our experiments. By simplifying the U-Net architecture
and incorporating proven techniques tailored to our needs,
we developed a model that is both less complex and more
effective. The integration of depth-wise separable convolution
and the substitution of pointwise convolution with the Ghost
Module significantly reduces complexity without compro-
mising performance. As shown in Table II, SUDS operates
with fewer parameters and requires less computational power
(FLOPs) compared to the other models. However, it slightly
underperforms on complex datasets with intricate features
or suboptimal lighting conditions, as indicated by a lower
Intersection over Union (IoU) compared to DC-UNet. Table
IV also reveals that data augmentation negatively impacted
the performance of our model in these experiments. Further



(a) Input Image (b) SUDS (c) DCUNet (d) Half-UNet

(e) UNet

Fig. 4: Segmentation output comparison for the investigated networks

improvements could be achieved by refining the model or
utilizing more advanced hardware.

VII. CONCLUSIONS

In this study, we demonstrate that the SUDS architecture for
medical image segmentation achieves success through strategic
simplifications and the integration of specific components and
techniques. SUDS maintains robust performance while reduc-
ing overall complexity by incorporating Depth-wise Separable
Convolution and the Ghost Module. We validate the effec-
tiveness of SUDS through comprehensive comparisons with
U-Net and its variants, which demonstrate that the proposed
architecture delivers comparable segmentation results while
significantly simplifying network complexity.

Future work. We want to train SUDS on different datasets
and broaden its capabilities, while also employing better
hardware for training and inferring. This can go hand in hand
with adapting the architecture to handle 3D medical image
data, such as MRI and CT scans. Implementing 3D depth-
wise separable convolutions that can maintain computational
efficiency while leveraging volumetric information might be
a promising area for future research. Another encouraging
direction would be the integration of attention mechanisms
(such as those used in Attention U-Net) to enable the model
to focus more precisely on the relevant regions within the
image. Attention modules could help improve segmentation
accuracy, especially for challenging datasets in which the
target structures exhibit significant variability. Finally, the end
goal of this research would be the collaboration with clinical
experts that could validate the relevance of the output provided
by SUDS and its integration within clinical workflows.
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