
EasyChair Preprint
№ 15133

NoRA: Neuro-Evolution of Low-Rank
Adaptation of Language Models

Iheb Gafsi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 28, 2024

1

NoRA: Neuro-Evolution of Low-Rank Adaptation of Language Models

Iheb Gafsi * 1 2

1INSAT 2Carthage University

Abstract

Large Language Models (LLMs) such as Llama and

Mistral suffer from limited diversity, originality of

thoughts on creative writing tasks, convergence to

“one point” results, and potentially approaching the

desired results from one path when fine-tuning. In

this work, we develop an iterative approach to LLM

alignment to further elevate the model’s capability of

novel text generation on downstream tasks. Our

method revolves around iteratively creating a popu-

lation of LoRA adapters, aligning them with IRPO

and consequently applying natural selection, custom-

ized crossover, and mutation. This effectively re-

sulted an increase of accuracy of 13% on Phi-3-Mini-

128K-Instruct and 11% on Mistral-7B-V0.2-Instruct

on a story telling dataset. Experiments on small cre-

ative writing tasks demonstrated the effectiveness of

this method.

1. Introduction

Unsupervised Large Language Models (LLMs) are

trained on very large and dense datasets with diverse

topics from the open web to encourage their under-

standing to human natural language, then fine-tuned

on a specific task such as question answering, senti-

ment analysis etc. And eventually aligned with

RLHF [Ouyang et al., 2022] or DPO [Rafailov et al.,

2023] to maintain the ethics and the specific format

of answering. Preference Optimization has proven to

outline gains to large language models and align with

human preferences compared to supervised fine-tun-

ing (SFT) alone [Ziegler et al., 2019, Stiennon et al.,

2020]. Recent works have shown that iterative appli-

cations introduce more efficiency and logic to the

model making it more informative, whereby elevate

the model’s precision and hence increase its perfor-

mance, these methods include Self-Rewarding

LLMs [Yuan et al., 2024] Iterative DPO [Xu et al.,

2023, Xiong et al., 2024] SPIN [Chen et al., 2024]

and Iterative Reasoning Preference Optimization

IRPO [Yuanzhe Pang et al., 2024] and other methods

[Rosset et al., 2024]. These methods have shown out-

standing results in thinking tasks mainly focusing on

mathematics and critical reasoning tasks. While

other iterative approaches that use generative reason-

ing models outlined significant performance at rea-

soning tasks. These methods that revolve around it-

erative training involving iteration of supervised

fine-tuning such as STaR [Zelikman et al., 2022], V-

STaR [Hosseini et al., 2024], Quiet-STaR [Zelikman

et al., 2024], and RestEM [Singh et al., 2023] and oth-

ers have been applied successfully on reasoning

tasks.

In this work we argue that the vanilla DPO steers the

model towards generating outputs that align with

preferred vocabularies, expressions, and concepts.

2

And we propose a novel method consisting of Neuro-

Evolution [O. Stanley, 2002] and IRPO with a Neg-

ative Log Likelihood NLL [Yuanzhe Pang et al.,

2024]. On each iteration we generate a population of

adapters, align them with IRPO+NLL, evaluate them

with the corresponding scores, then we apply the

principal of “The survival is for the fittest” to finalize

the first step. Then we perform a crossover on the

LoRA adapters, perform genetic mutations to create

adapter mutants and reiterate.

Figure 1: Overview of NoRA Algorithm. During

training we created a population of 3 adapters and

trained them with IRPO, then used natural selection

factors, crossed over and then mutants are created

and repeat. During inference we only use the fittest

among this population that is saved before stagna-

tion.

With this model we achieved an observable increase

of performance on a variety of models such as Mis-

tral-7B-v0.2-Instruct and Phi-3-Mini-128K-Instruct

where we Phi-3-Mini introduced an increase of 13%

and Mistral 11% on a creative writing dataset.

Thereby, this experiment demonstrated the effective-

ness of this method.

2. Neuro-Evolution of Low-Rank

Adaptation:

Population: Initially, create a population of adapters

with randomly initialized weights of sizes 𝑊1 ∈

ℝ𝑘×𝑑 and 𝑊2 ∈ ℝ𝑑×ℎ corresponding to the original

weight 𝑊𝑚 ∈ ℝ𝑘×ℎ and d is initialized to 1 at an ini-

tial configuration. This specific configuration is cru-

cial for the continuity of the genetic algorithm. The

number of genomes in the population isn't scalable

for large LLMs (~24B or more). However, it ensures

the variety of adapter solutions to obtain. Hence, for

smaller models like Mistral-7B and Phi-3-Mini it is

advisable to populate your adapters as far as your

ressource on your cloud provider such as GCP, AWS,

and Azure is able to compute.

The quantity of adapters will open the portal for dif-

ferent approaches to the result which will eventually

result an induced potential, whereby the model dis-

covers new patterns for each adapter that will later be

combined together in the final outcome.

IRPO + NLL: We first begin with the current

adapter 𝐴𝑡, and we generate N different responses for

every input 𝑥 where every response consists of

Chain-of-Thought CoT reasoning 𝑐 followed by a fi-

nal answer 𝑦:

(𝑐𝑖
𝑛, 𝑦𝑖

𝑛)~𝐴𝑡(𝑥𝑖) ∀𝑥𝑖 ∈ 𝐷 𝑎𝑛𝑑 𝑛 ∈ [1, 𝑁]

3

One then computes the reward 𝑟𝑖
𝑛 = 𝑅(𝑦𝑖

𝑛, 𝑦𝑖) based

on the correctness of each of these responses. We

construct then a set of generated responses aug-

mented

𝐺𝑖 = {𝑐𝑖
𝑛, 𝑦𝑖

𝑛, 𝑟𝑖
𝑛}𝑛∈[1,𝑁]

In the next step we construct a dataset of response

pairs 𝐷𝑡
𝑝𝑎𝑖𝑟𝑠

 based on the generations 𝐺𝑖 [Yuanzhe

Pang et al., 2024]

Given the preference pairs, we can now train a new

model 𝐴𝜃 that will becomes the next model 𝑀𝑡+1.

The parameters 𝜃 are initialized from model 𝐴𝑡

[Yuanzhe Pang et al., 2024]. The loss corresponding

to each preference pair is as follows:

ℒ𝐷𝑃𝑂+𝑁𝐿𝐿 = −
log 𝑀𝜃(𝑥𝑖, 𝑐𝑖

𝜔, 𝑦𝑖
𝜔)

|𝑥𝑖| + |𝑐𝑖
𝜔| + |𝑦𝑖

𝜔|

− 𝛼 log 𝜎 (𝛽
log 𝑀𝜃(𝑐𝑖

𝜔, 𝑦𝑖
𝜔|𝑥𝑖)

log 𝑀𝑡(𝑐𝑖
𝜔, 𝑦𝑖

𝜔|𝑥𝑖)

− 𝛽
log 𝑀𝜃(𝑐𝑖

𝑙 , 𝑦𝑖
𝑙|𝑥𝑖)

log 𝑀𝑡(𝑐𝑖
𝑙 , 𝑦𝑖

𝑙|𝑥𝑖)
)

Natural Selection: On the evaluation stage, adapters

would have different genes encoded in their weights

and topologies. An evaluation is done on a down-

stream task for all of the genomes in the population.

Whereby, some genotypes will stand out with more

features for survival and ones will obtain high scores

(reversed fitness scores) and potentially decrease

their chances of continuation. The fitness function

[O. Stanley et al., 2002] will be the loss where the

goal is:

min 𝔼[ℒ𝐷𝑃𝑂+𝑁𝐿𝐿]

 The selection will not be limited on genomes with

the lowest reversed fitness scores but instead will be

used for hidden features.

Crossover: To finalize the first iteration of the NoRA

algorithm, all the survived Genomes will be crossed

over in pairs, potentially procreating and resulting a

new population of their offsprings.

The repopulation process is what gives NoRA

effectiveness. We take one pair of adapters 𝐴𝑛 and

𝐴𝑚 and we combine their genetic codes. For in-

stance, we take the two matrices for each weight of

the corresponding adapter: 𝑊𝑛1 ∈ ℝ𝑘×𝑑𝑛 , 𝑊𝑛2 ∈

ℝ𝑑𝑛×ℎ and 𝑊𝑚1 ∈ ℝ𝑘×𝑑𝑚 , 𝑊𝑚2 ∈ ℝ𝑑𝑚×ℎ the

corresponding adapter matrices respectively to 𝐴𝑛

and 𝐴𝑚, 𝑑𝑛, 𝑑𝑚 are the intrinsic dimensions of these

weights. In our work we introduced 2 more coeffi-

cient matrices with values ∈]0,1[, we denote these

matrices 𝐶𝑛1 ∈ ℝ𝑘×𝑑𝑛 , 𝐶𝑛2 ∈ 𝐶𝑑𝑛×ℎ and 𝐶𝑚1 ∈

ℝ𝑘×𝑑𝑚 , 𝐶𝑚2 ∈ ℝ𝑑𝑚×ℎ the values of which will be de-

termined with its performance because survival is for

the fittest. We then calculate the scaling factors 𝜎, 𝛾

to benefit the fittest.

𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ((
𝜑(𝐴𝑛)

𝜑(𝐴𝑚)
)) 𝜎

= 𝑉1 and 𝛾 = 𝑉2

The resulting adapter matrices will be the projection

of the matrices with higher intrinsic weights on the

one with lower one so their sizes would be 𝑊𝑅1 ∈

ℝ𝑘×max (𝑑𝑛,𝑑𝑚), 𝑊𝑅2 ∈ ℝmax (𝑑𝑛,𝑑𝑚)×ℎ , as well as

summing them so the describing equation would be:

𝑊𝑅1 = 𝜎𝐶𝑛1 ⊙ 𝑊𝑛1 ⨁ 𝜎𝐶𝑚1 ⊙ 𝑊𝑚1

𝑊𝑅2 = 𝜎𝐶𝑛2 ⊙ 𝑊𝑛2 ⨁ 𝜎𝐶𝑚2 ⊙ 𝑊𝑚2

Here ⊙ presents the Hadamard product and ⨁ is the

operator for projection and summation.

Figure 2: A matrix summation and projection where

the first is larger than the second one. The resulting

4

matrix is the fusion of them, creating an offspring

adapter matrix.

Favorizing the genes of the fittest is a crucial part of

the evolution of the adapters and hence increases the

performance of the model.

Mutation: To finalize the reproduction process, we

used different types of mutations such as value mu-

tations and topology mutations. To summarize the

model has a certain probability of changing one of its

weights, completely or partially, as well as having a

probability for adding or deleting an intrinsic dimen-

sionality. Adding a dimensionality works by concat-

enating a null vector to the extremity of each matrix,

and removing one works in the same order. This en-

sures the innovation of the model and thus increases

its chances of obtaining different approaches to final

goal.

This method can look similar to the one used by O.

Stanley et al. [2002] but is simpler and adapted to a

more complex problem such as this one. There are

four main differences. First, in the vanilla NEAT we

use dynamic neural networks that cannot be manipu-

lated with matrices but instead with graphs, while we

use tensor-based neural networks due to the com-

plexity of the model’s architecture. Second, NEAT

used initial environment fitness functions to deter-

mine the model’s overall architecture, here we use

IRPO’s loss as a reverse fitness function to minimize

the cost and potentially choose the right adapter.

Third, our method introduces coefficient crossover to

potentially favor the genes of the fittest. Fourth, due

to the different topologies of the adapters (inequiva-

lent intrinsic dimensions) we introduced the projec-

tion and addition mechanism.

Table1: CW6K results comparing Neuro-Evolution

of Low-Rank Adaptation of Language Models

(NoRA) against other model baselines trained on the

same data and the same iterations. We report exact

accuracy match between the two parties.

Model

Test Accuracy (%)

NoRA (initialized from

Mistral 7B v0.2 in-

struct)
 Iteration 1

 Iteration 2

 Iteration 3

 Iteration 10

55.1

56.3

56.9

65.7

NoRA (initialized from
Phi-3-mini instruct)

 Iteration 1

 Iteration 2

 Iteration 3

 Iteration 10

51.6

55.9

56.3

62.8

Other Mistral 7B ini-

tialized methods

 IRPO initialized Mis-
tral 7B v0.2 instruct

 Zero-shot CoT

51.0

47.2

Using NoRA allows the model to surpass the chain

of thoughts as shown in Figure 3. This demonstrates

the effectiveness of NoRA over small models.

3. Experiments

3.1. Creative Writing CW6K

Our experiments aimed to improve model perfor-

mance on solving creative writing problems. We uti-

lized the CW6K dataset containing real problems

with questions (𝑥𝑖), human solutions (𝑐𝑖 with answer

𝑦𝑖), and a training set of roughly 7.5k problems.

We began with the Mistral-v0.2 7B model as our seed

model. We employed zero-shot prompts (detailed in

Appendix A.1) that combined the problem question

with instructions to generate solutions in a specific

format, allowing for easy answer extraction.

In each of ten iterations, we generated 12 solutions

(N) per problem using sampling. The temperature for

sampling was set at 0.7 for the first two iterations and

1.3 for the final two, aiming to introduce a higher

chance of incorrect solutions later on. Since some

5

problems might not have a model-generated correct

solution, the gold human solution (𝑐𝑖, 𝑦𝑖) was in-

cluded in the winning set (𝐺𝑖
𝑤) to ensure it wasn't

empty.

Next, we generated 10 solution pairs (K) per problem

for training with the loss function described in Equa-

tion 1. Pairs exceeding the context length or lacking

any incorrect generations were filtered out. This re-

sulted in roughly 6k training pairs per iteration.

For each iteration, we trained the model for a maxi-

mum of 2000 steps. We then selected the best check-

point based on a held-out set of 100 training samples.

Finally, we retried the training process including

those 100 samples for the chosen number of steps.

The training utilized a batch size of 16 and a learning

rate of 7e-7. The overall results, including exact

match accuracy on the CW6K test set, are presented

in Table 1.

Figure 4: Effect of NoRA in term of IRPO train-

ing. In our CW6K experiment we kept track on the

IRPO loss evolution in comparison to NoRA, the

IRPO loss converges much faster than NoRA’s. This

reveals the effectiveness of NoRA on the SFT trained

Mistral.

4. Related Work

Iterative Reasoning Preference Optimization

Previous research has shown that iterative preference

optimization methods excel at general instruction

tuning tasks for large language models (LLMs)

[Yuan et al., 2024; Chen et al., 2024]. However, these

methods often yield minimal improvement or even

hinder performance on reasoning tasks. This work by

Pang et al. (2024) proposes a novel iterative ap-

proach that optimizes preference between competing

Chain-of-Thought (CoT) candidates. Their method

focuses on identifying winning reasoning steps that

lead to the correct answer, contrasting with losing

steps. Training involves a modified DPO loss func-

tion incorporating a negative log-likelihood (NLL)

term, which they demonstrate as crucial for improve-

ment. Their iterative approach using only training set

examples significantly boosts reasoning accuracy on

various benchmarks. Notably, they achieve an accu-

racy increase from 55.6% to 81.6% on GSM8K using

Llama-2-70B-Chat, surpassing other Llama-2-based

methods that rely on additional datasets.

Methods Improving Reasoning Ability Several

recent approaches focus on improving training data

for reasoning tasks ([Yu et al., 2023, Toshniwal et al.,

2024]). This work, however, takes a different ap-

proach by investigating learning algorithms. Existing

methods like Expert Iteration, STaR, and ReSTEM

all rely on filtering high-quality training examples

through various loops and refinements. These ap-

proaches differ from ours in that they utilize tech-

niques like rejection sampling and ground truth veri-

fication, rather than our focus on pairwise preference

optimization. V-STaR is similar in its use of a veri-

fier, but it trains the verifier with DPO, while we train

the generator itself. MAPO also leverages DPO, but

for a different purpose - achieving multilingual rea-

soning through translation.

6

Acknowledgment

We thank our colleagues at the National Institute of Applied Sciences and Technology of Tunis INSAT and the

CU for the valuable discussion, especially my professors for their assistance.

References

[1] Kenneth O. Stanley, Risto Miikkulainen. Evolving Neural Networks through Augmenting Topologies. URL

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

[2] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, Chelsea Finn. Di-

rect Preference Optimization: Your Language Model is Secretly a Reward Model. arXiv preprint

arXiv:2305.18290v2, 2024.

[3] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de

las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,

Marie- Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, Wil-

liam El Sayed. Mistral 7B Technical Report. arXiv preprint arXiv:2310.06825v1, 2023

[4] Long Ouyang, Jeff Wu, Pamela Mishkin, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Chong Zhang,

Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Amanda Askell, Jan Leike, Fra-

ser Kelton, Peter Welinder, Luke Miller, Maddie Simens, Paul Christiano, Ryan Lowe. Training language

models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155v1, 2022

[5] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano,

and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint

arXiv:1909.08593, 2019.

[6] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario

Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in Neural

http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf

7

Information Processing Systems, 33:3008–3021, 2020.

[7] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.

Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

[8] Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than others:

Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682, 2023.

[9] Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sampling from human

feedback: A provable kl-constrained framework for rlhf. arXiv preprint arXiv:2312.11456, 2023.

[10] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts

weak language models to strong language models. arXiv preprint arXiv:2401.01335, 2024.

[11] Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, Jason Weston, Itera-

tive Reasoning Preference Optimization. arXiv preprint arXiv: 2404.19733v1, 2024

[12] Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and Tengyang

Xie. Direct nash optimization: Teaching language models to self-improve with general preferences. arXiv

preprint arXiv:2404.03715, 2024.

[13] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning.

Advances in Neural Information Processing Systems, 35 :15476–15488, 2022.

[14] Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh Agarwal.

V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457, 2024.

[15] Eric Zelikman, Nick Haber, Georges Harik, Yijia Shao, Noah D.Goodman, Abstract Varuna Jayasiri. Quiet-

STaR: language models can teach themselves to think before speaking arXiv preprint

arXiv:2403.09629v1,2024

[16] Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James Harrison,

Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training for problem-solving

8

with language models. arXiv preprint arXiv:2312.06585, 2023.

[17] Edward Hu, Yuanzhi Li, Yelong Shen, Shean Wang, Phillip Wallis, Lu Wang, Zeyuan, Allen-Zhu, Weizhu

Chen. LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685v2, 2021.

[18] Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Git man. Open-

mathinstruct-1: A 1.8 million math instruction tuning dataset. arXiv preprint arXiv:2402.10176, 2024.

[19] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li,

Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language

models. arXiv preprint arXiv:2309.12284, 2023.

A. More Details on Experimental Setup

A.1 Prompts

CWK16: Foreach CW6K question, we use the following prompt as the input to the language model:

You are a creative writer, your task is to write an article, going through an organized logical and lexical pro-

cess to eventually write the corresponding article.

Question: [question]

Answer:

