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Abstract 

Large Language Models (LLMs) such as Llama and 

Mistral suffer from limited diversity, originality of 

thoughts on creative writing tasks, convergence to 

“one point” results, and potentially approaching the 

desired results from one path when fine-tuning. In 

this work, we develop an iterative approach to LLM 

alignment to further elevate the model’s capability of 

novel text generation on downstream tasks. Our 

method revolves around iteratively creating a popu-

lation of LoRA adapters, aligning them with IRPO 

and consequently applying natural selection, custom-

ized crossover, and mutation. This effectively re-

sulted an increase of accuracy of 13% on Phi-3-Mini-

128K-Instruct and 11% on Mistral-7B-V0.2-Instruct 

on a story telling dataset. Experiments on small cre-

ative writing tasks demonstrated the effectiveness of 

this method. 

 

1. Introduction 

Unsupervised Large Language Models (LLMs) are 

trained on very large and dense datasets with diverse 

topics from the open web to encourage their under-

standing to human natural language, then fine-tuned 

on a specific task such as question answering, senti-

ment analysis etc. And eventually aligned with 

RLHF [Ouyang et al., 2022] or DPO [Rafailov et al., 

2023] to maintain the ethics and the specific format 

of answering. Preference Optimization has proven to 

outline gains to large language models and align with 

human preferences compared to supervised fine-tun-

ing (SFT) alone [Ziegler et al., 2019, Stiennon et al., 

2020]. Recent works have shown that iterative appli-

cations introduce more efficiency and logic to the 

model making it more informative, whereby elevate 

the model’s precision and hence increase its perfor-

mance, these methods include Self-Rewarding 

LLMs [Yuan et al., 2024] Iterative DPO [Xu et al., 

2023, Xiong et al., 2024] SPIN [Chen et al., 2024] 

and Iterative Reasoning Preference Optimization 

IRPO [Yuanzhe Pang et al., 2024] and other methods 

[Rosset et al., 2024]. These methods have shown out-

standing results in thinking tasks mainly focusing on 

mathematics and critical reasoning tasks. While 

other iterative approaches that use generative reason-

ing models outlined significant performance at rea-

soning tasks. These methods that revolve around it-

erative training involving iteration of supervised 

fine-tuning such as STaR [Zelikman et al., 2022], V-

STaR [Hosseini et al., 2024], Quiet-STaR [Zelikman 

et al., 2024], and RestEM [Singh et al., 2023] and oth-

ers have been applied successfully on reasoning 

tasks. 

In this work we argue that the vanilla DPO steers the 

model towards generating outputs that align with 

preferred vocabularies, expressions, and concepts. 
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And we propose a novel method consisting of Neuro-

Evolution [O. Stanley, 2002] and IRPO with a Neg-

ative Log Likelihood NLL [Yuanzhe Pang et al., 

2024]. On each iteration we generate a population of 

adapters, align them with IRPO+NLL, evaluate them 

with the corresponding scores, then we apply the 

principal of “The survival is for the fittest” to finalize 

the first step. Then we perform a crossover on the 

LoRA adapters, perform genetic mutations to create 

adapter mutants and reiterate.   

    

 

 

Figure 1: Overview of NoRA Algorithm. During 

training we created a population of 3 adapters and 

trained them with IRPO, then used natural selection 

factors, crossed over and then mutants are created 

and repeat. During inference we only use the fittest 

among this population that is saved before stagna-

tion. 

With this model we achieved an observable increase 

of performance on a variety of models such as Mis-

tral-7B-v0.2-Instruct and Phi-3-Mini-128K-Instruct 

where we Phi-3-Mini introduced an increase of 13% 

and Mistral 11% on a creative writing dataset. 

Thereby, this experiment demonstrated the effective-

ness of this method. 

 

2. Neuro-Evolution of Low-Rank 

Adaptation:  

Population: Initially, create a population of adapters 

with randomly initialized weights of sizes 𝑊1 ∈

ℝ𝑘×𝑑 and 𝑊2 ∈ ℝ𝑑×ℎ corresponding to the original 

weight 𝑊𝑚 ∈ ℝ𝑘×ℎ and d is initialized to 1 at an ini-

tial configuration. This specific configuration is cru-

cial for the continuity of the genetic algorithm. The 

number of genomes in the population isn't scalable 

for large LLMs (~24B or more). However, it ensures 

the variety of adapter solutions to obtain. Hence, for 

smaller models like Mistral-7B and Phi-3-Mini it is 

advisable to populate your adapters as far as your 

ressource on your cloud provider such as GCP, AWS, 

and Azure is able to compute.  

The quantity of adapters will open the portal for dif-

ferent approaches to the result which will eventually 

result an induced potential, whereby the model dis-

covers new patterns for each adapter that will later be 

combined together in the final outcome.  

IRPO + NLL: We first begin with the current 

adapter 𝐴𝑡, and we generate N different responses for 

every input 𝑥 where every response consists of 

Chain-of-Thought CoT reasoning 𝑐 followed by a fi-

nal answer 𝑦:  

(𝑐𝑖
𝑛, 𝑦𝑖

𝑛)~𝐴𝑡(𝑥𝑖)        ∀𝑥𝑖 ∈ 𝐷 𝑎𝑛𝑑 𝑛 ∈ [1, 𝑁] 
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One then computes the reward 𝑟𝑖
𝑛 = 𝑅(𝑦𝑖

𝑛, 𝑦𝑖) based 

on the correctness of each of these responses. We 

construct then a set of generated responses aug-

mented 

𝐺𝑖 = {𝑐𝑖
𝑛, 𝑦𝑖

𝑛, 𝑟𝑖
𝑛}𝑛∈[1,𝑁] 

In the next step we construct a dataset of response 

pairs 𝐷𝑡
𝑝𝑎𝑖𝑟𝑠

  based on the generations 𝐺𝑖 [Yuanzhe 

Pang et al., 2024]  

Given the preference pairs, we can now train a new 

model 𝐴𝜃 that will becomes the next model 𝑀𝑡+1. 

The parameters 𝜃 are initialized from model 𝐴𝑡 

[Yuanzhe Pang et al., 2024]. The loss corresponding 

to each preference pair is as follows: 

ℒ𝐷𝑃𝑂+𝑁𝐿𝐿 = −
log 𝑀𝜃(𝑥𝑖, 𝑐𝑖

𝜔, 𝑦𝑖
𝜔)

|𝑥𝑖| + |𝑐𝑖
𝜔| + |𝑦𝑖

𝜔|

− 𝛼 log 𝜎 (𝛽
log 𝑀𝜃(𝑐𝑖

𝜔, 𝑦𝑖
𝜔|𝑥𝑖)

log 𝑀𝑡(𝑐𝑖
𝜔, 𝑦𝑖

𝜔|𝑥𝑖)

− 𝛽
log 𝑀𝜃(𝑐𝑖

𝑙 , 𝑦𝑖
𝑙|𝑥𝑖)

log 𝑀𝑡(𝑐𝑖
𝑙 , 𝑦𝑖

𝑙|𝑥𝑖)
) 

Natural Selection: On the evaluation stage, adapters 

would have different genes encoded in their weights 

and topologies. An evaluation is done on a down-

stream task for all of the genomes in the population. 

Whereby, some genotypes will stand out with more 

features for survival and ones will obtain high scores 

(reversed fitness scores) and potentially decrease 

their chances of continuation. The fitness function 

[O. Stanley et al., 2002] will be the loss where the 

goal is: 

min 𝔼[ℒ𝐷𝑃𝑂+𝑁𝐿𝐿] 

 The selection will not be limited on genomes with 

the lowest reversed fitness scores but instead will be 

used for hidden features.  

Crossover: To finalize the first iteration of the NoRA 

algorithm, all the survived Genomes will be crossed 

over in pairs, potentially procreating and resulting a 

new population of their offsprings.   

The repopulation process is what gives NoRA 

effectiveness. We take one pair of adapters 𝐴𝑛 and 

𝐴𝑚 and we combine their genetic codes. For in-

stance, we take the two matrices for each weight of 

the corresponding adapter: 𝑊𝑛1 ∈ ℝ𝑘×𝑑𝑛 , 𝑊𝑛2 ∈

ℝ𝑑𝑛×ℎ   and   𝑊𝑚1 ∈ ℝ𝑘×𝑑𝑚 , 𝑊𝑚2 ∈ ℝ𝑑𝑚×ℎ the 

corresponding adapter matrices respectively to 𝐴𝑛 

and 𝐴𝑚, 𝑑𝑛, 𝑑𝑚 are the intrinsic dimensions of these 

weights. In our work we introduced 2 more coeffi-

cient matrices with values ∈]0,1[ , we denote these 

matrices 𝐶𝑛1 ∈ ℝ𝑘×𝑑𝑛 , 𝐶𝑛2 ∈ 𝐶𝑑𝑛×ℎ   and   𝐶𝑚1 ∈

ℝ𝑘×𝑑𝑚 , 𝐶𝑚2 ∈ ℝ𝑑𝑚×ℎ the values of which will be de-

termined with its performance because survival is for 

the fittest. We then calculate the scaling factors 𝜎, 𝛾 

to benefit the fittest. 

𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ((
𝜑(𝐴𝑛)

𝜑(𝐴𝑚)
))            𝜎

= 𝑉1      and     𝛾 = 𝑉2 

The resulting adapter matrices will be the projection 

of the matrices with higher intrinsic weights on the 

one with lower one so their sizes would be 𝑊𝑅1 ∈

ℝ𝑘×max (𝑑𝑛,𝑑𝑚), 𝑊𝑅2 ∈ ℝmax (𝑑𝑛,𝑑𝑚)×ℎ , as well as 

summing them so the describing equation would be: 

𝑊𝑅1 = 𝜎𝐶𝑛1 ⊙ 𝑊𝑛1 ⨁  𝜎𝐶𝑚1 ⊙ 𝑊𝑚1 

𝑊𝑅2 = 𝜎𝐶𝑛2 ⊙ 𝑊𝑛2 ⨁  𝜎𝐶𝑚2 ⊙ 𝑊𝑚2 

Here ⊙ presents the Hadamard product and ⨁ is the 

operator for projection and summation. 

 

Figure 2: A matrix summation and projection where 

the first is larger than the second one. The resulting 
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matrix is the fusion of them, creating an offspring 

adapter matrix. 

Favorizing the genes of the fittest is a crucial part of 

the evolution of the adapters and hence increases the 

performance of the model. 

Mutation: To finalize the reproduction process, we 

used different types of mutations such as value mu-

tations and topology mutations. To summarize the 

model has a certain probability of changing one of its 

weights, completely or partially, as well as having a 

probability for adding or deleting an intrinsic dimen-

sionality. Adding a dimensionality works by concat-

enating a null vector to the extremity of each matrix, 

and removing one works in the same order. This en-

sures the innovation of the model and thus increases 

its chances of obtaining different approaches to final 

goal. 

This method can look similar to the one used by O. 

Stanley et al. [2002] but is simpler and adapted to a 

more complex problem such as this one. There are 

four main differences. First, in the vanilla NEAT we 

use dynamic neural networks that cannot be manipu-

lated with matrices but instead with graphs, while we 

use tensor-based neural networks due to the com-

plexity of the model’s architecture. Second, NEAT 

used initial environment fitness functions to deter-

mine the model’s overall architecture, here we use 

IRPO’s loss as a reverse fitness function to minimize 

the cost and potentially choose the right adapter. 

Third, our method introduces coefficient crossover to 

potentially favor the genes of the fittest. Fourth, due 

to the different topologies of the adapters (inequiva-

lent intrinsic dimensions) we introduced the projec-

tion and addition mechanism. 

 

Table1: CW6K results comparing Neuro-Evolution 

of Low-Rank Adaptation of Language Models 

(NoRA) against other model baselines trained on the 

same data and the same iterations. We report exact 

accuracy match between the two parties. 

 

Model 

 

Test Accuracy (%) 

NoRA (initialized from 

Mistral 7B v0.2 in-

struct) 
    Iteration 1 

    Iteration 2 

    Iteration 3 

    Iteration 10 

 

 

 

55.1 

56.3 

56.9 

65.7 

NoRA (initialized from 
Phi-3-mini instruct) 

    Iteration 1 

    Iteration 2 

    Iteration 3 

    Iteration 10 

 

 

51.6 

55.9 

56.3 

62.8 

Other Mistral 7B ini-

tialized methods 

    IRPO initialized Mis-
tral 7B v0.2 instruct 

    Zero-shot CoT 

 

51.0 

 

47.2 

 

Using NoRA allows the model to surpass the chain 

of thoughts as shown in Figure 3. This demonstrates 

the effectiveness of NoRA over small models. 

3. Experiments  

3.1. Creative Writing CW6K 

Our experiments aimed to improve model perfor-

mance on solving creative writing problems. We uti-

lized the CW6K dataset containing real problems 

with questions (𝑥𝑖), human solutions (𝑐𝑖 with answer 

𝑦𝑖), and a training set of roughly 7.5k problems. 

We began with the Mistral-v0.2 7B model as our seed 

model. We employed zero-shot prompts (detailed in 

Appendix A.1) that combined the problem question 

with instructions to generate solutions in a specific 

format, allowing for easy answer extraction. 

In each of ten iterations, we generated 12 solutions 

(N) per problem using sampling. The temperature for 

sampling was set at 0.7 for the first two iterations and 

1.3 for the final two, aiming to introduce a higher 

chance of incorrect solutions later on. Since some 
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problems might not have a model-generated correct 

solution, the gold human solution (𝑐𝑖, 𝑦𝑖) was in-

cluded in the winning set (𝐺𝑖
𝑤) to ensure it wasn't 

empty. 

Next, we generated 10 solution pairs (K) per problem 

for training with the loss function described in Equa-

tion 1. Pairs exceeding the context length or lacking 

any incorrect generations were filtered out. This re-

sulted in roughly 6k training pairs per iteration. 

For each iteration, we trained the model for a maxi-

mum of 2000 steps. We then selected the best check-

point based on a held-out set of 100 training samples. 

Finally, we retried the training process including 

those 100 samples for the chosen number of steps. 

The training utilized a batch size of 16 and a learning 

rate of 7e-7. The overall results, including exact 

match accuracy on the CW6K test set, are presented 

in Table 1. 

 

Figure 4: Effect of NoRA in term of IRPO train-

ing. In our CW6K experiment we kept track on the 

IRPO loss evolution in comparison to NoRA, the 

IRPO loss converges much faster than NoRA’s. This 

reveals the effectiveness of NoRA on the SFT trained 

Mistral. 

4. Related Work 

Iterative Reasoning Preference Optimization  

Previous research has shown that iterative preference 

optimization methods excel at general instruction 

tuning tasks for large language models (LLMs) 

[Yuan et al., 2024; Chen et al., 2024]. However, these 

methods often yield minimal improvement or even 

hinder performance on reasoning tasks. This work by 

Pang et al. (2024) proposes a novel iterative ap-

proach that optimizes preference between competing 

Chain-of-Thought (CoT) candidates. Their method 

focuses on identifying winning reasoning steps that 

lead to the correct answer, contrasting with losing 

steps. Training involves a modified DPO loss func-

tion incorporating a negative log-likelihood (NLL) 

term, which they demonstrate as crucial for improve-

ment. Their iterative approach using only training set 

examples significantly boosts reasoning accuracy on 

various benchmarks. Notably, they achieve an accu-

racy increase from 55.6% to 81.6% on GSM8K using 

Llama-2-70B-Chat, surpassing other Llama-2-based 

methods that rely on additional datasets. 

 

Methods Improving Reasoning Ability  Several 

recent approaches focus on improving training data 

for reasoning tasks ([Yu et al., 2023, Toshniwal et al., 

2024]). This work, however, takes a different ap-

proach by investigating learning algorithms. Existing 

methods like Expert Iteration, STaR, and ReSTEM 

all rely on filtering high-quality training examples 

through various loops and refinements. These ap-

proaches differ from ours in that they utilize tech-

niques like rejection sampling and ground truth veri-

fication, rather than our focus on pairwise preference 

optimization. V-STaR is similar in its use of a veri-

fier, but it trains the verifier with DPO, while we train 

the generator itself. MAPO also leverages DPO, but 

for a different purpose - achieving multilingual rea-

soning through translation. 
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A. More Details on Experimental Setup 

A.1 Prompts 

CWK16: Foreach CW6K question, we use the following prompt as the input to the language model:  

You are a creative writer, your task is to write an article, going through an organized logical and lexical pro-

cess to eventually write the corresponding article. 

Question: [question] 

Answer: 


