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1 Introduction

Reasoning about position and distance is vital for cognitive robotics, land/marine navigation and surveying
applications. Motion planning and collecting survey knowledge requires identifying relative position
and orientation of static objects as well as navigating agents in the environment. In marine navigation,
vessels need to position themselves with respect to other agents and the port, for example Vessel 4 reports
vessel 2 is on its starboard 147o. Vessel 3 states 6 is at his behind and near to the port, vessel 6 observes
7 on clock angle 9. As another example, in the robotic perception and motion planning problem of
[Moratz et al.2005, Dylla and Moratz2004, Moratz and Ragni2008], the human user instructs the robot
“to navigate to the red cube behind the blue cube” (Figure 1). To achieve this goal, the robot needs to
identify which red cube is behind the blue cube (C). In a similar vein, oriented objects and relative
position are also prevalent in surveying, localization/mapping and street networks, as in the statements
“The cafeteria is in front-left of the library and very near to it”, “When you go down the Kingston road
and reach the junction, Wimbledon avenue will be on your left”.

Figure 1: Robotic sensing and motion planning scenario

In these contexts, moving agents have some bearing and pivot objects may have some intrinsic orientation.
Navigating robots and vessels need to know relative position of other agents for collision avoidance,
motion/task planning and fleet management. Such relative location and distance information can be
quantitative (e.g. the tanker robot is to the 12 m and 53 angle of robot 2) as well as qualitative or coarse (e.g.
robot 5 is to the left-front and near to robot 7, ship 3 is starboard to ship 4). The latter is relevant in contexts
with human presence or data obtained from sensors is imprecise or exact location of an extended object is
hard to determine. In marine exploration, metric data about location and heading can be obtained from GPS
and measurement devices, but additional complex calculations are necessary to determine relative location
of the agent with respect to the port and other agents. In these sitautions, marine men often use simple
view or deck sight to locate themselves, e.g. we are near and southwest of Patara marina, or the yatch is
starboard and behind us. Besides such qualitative direct information is beneficial for verification of sensor
data in case of fault or calibration. Until now, robotic and marine navigation literature mostly focused on
collision and motion planning [Maaref and Barret2002, Frommberger2008, Miguel-Tomé2021], rather
than reasoning about kowledge.
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In this paper, we study reasoning about relative position, orientation and distance of point objects in
2D space. We start with Oriented Point Relation Algebra (OPRA )[Moratz et al.2005] which describes
qualitative position of oriented points on the plane. We construct a new calculus HOPRA by augmenting
qualitative direction and quantitative location, distance, orientation information to OPRA . Then we
develop a framework for reasoning with this hybrid formalism using Answer Set Programming. The
framework can check consistency of a set of qualitative and quantitative constraints, explain source
of inconsistency, handle uncertain and presumed information, infer new knowledge and generate a
configuration of objects. We evaluate efficiency of our method by computational experiments and
illustrate its applications with sample scenarios.

2 Preliminaries

2.1 OPRA Formalism

OPRA describes qualitative position of two oriented points on 2D space with adjustable granularity g. In
OPRA g, there are 4g relations indexed from 0 to 4g − 1. The even indexed relations are linear (along a
line) whereas odd indexed relations are angular. The length of an angular sector is 180o/g. Let (xK , yK)
denote the location and φK denote the intrinsic orientation (heading) of object K. ϕKL = tan−1(yL −
yK)/(xL − xK) denotes the absolute angle of the vector

−−→
KL directed from K to L. If the location of K

and L are different, the OPRA g relation is shown as K g ∠i
j L which reads K is on sector i wrt viewpoint

of L and L is on sector j wrt viewpoint of K. Namely, K falls onto sector i of L and L falls onto sector j
of K. ψKL =ϕKL − φK denotes the relative angular position of L wrt K (and vice versa for ψLK). We
name these relations differential OPRA relations. For example, in Figure 2(a) below K 4∠2

13 L.

Figure 2: Example for OPRA relations

When the location of K and L coincide, the relative angular position of L with respect to K is defined as
the difference between intrinsic orientations, i.e. δLK =φL − φK . In this case, the OPRA g relation is
shown as K g ∠ i L which reads L is on sector i wrt viewpoint of K. We name this type of relation as
same OPRA relation. To examplify, K 2∠ 3L in Figure 2(b). Note that specifying j is unnecessary since
j= 4g − i.

[Clementini et al.1997] has introduced qualitative interval-based distance relation with symbolic binary
relation such as overlap , near , far with adjustable granularity. Each distance relation is associated with
an interval, for example near corresponds to [2.5, 4.7]. If the Euclidean distance between two objects is
in this range, they are near to each other. We create a new hybrid calculus named HOPRA by adding
distance relation K β L and quantitative constraints to OPRA . Quantitative constraints are of the form
(1) φ(K) = ao, (2) φ(K) ∈ [ao, bo], (3) φ(K) =

−→
PR,

(4) ψ(K,L) = ao, (5) ψ(K,L) ∈ [ao, bo],
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(6) δ(K,L) = ao, (7) δ(K,L) ∈ [ao, bo],
(8) loc(K) = (x, y), (9) dist(K,L) = c, (10) dist(K,L) ∈ [c, d].

(1-3) are about intrinsic orientation (heading), (4-5) about relative position for objects whose location
different, (6-7) about relative position for objects with same location, (8) numerical location and (9-10)
numerical distance.

In HOPRA, we also introduce single-sided differential OPRA relation K g ]i L. A single-sided OPRA
relation specifies only the relative position of K wrt L, and not the other way around. The intuition is
agent L may not know how it is observed from viewpoint of other agent K. In HOPRA, we allow for
heterogenous relations: an agent K observes relative position of L with granularity g1, while agent L
observes K or M with granularity g2 6= g1.

2.2 Answer Set Programming

Answer Set Programming (ASP) is a logic programming paradigm based on answer set semantics [Gelfond and Lifschitz1988,
Gelfond and Lifschitz1991]. It provides a formal framework for knowledge reasoning and declaratively
solving computationally hard problems. ASP models a problem by a set of logical formulas (called rules),
so that its models (called answer sets) characterize the solutions. ASP provides logical formulas, called
rules, of the form

Head ← L1, . . . , Lk, not Lk+1, . . . , not Ll (1)

where l ≥ k ≥ 0, Head is a literal and each Li is a literal. A literal is an atom A or its negation ¬A) or ⊥.
A rule is called a constraint if Head is ⊥, and a fact if l = 0. A set of rules is called a program.

Choice rules (a special type of a logical formula) allows to make nondeterministic choices. For example
the rule below chooses at least 1 and at most 5 intern among candidates, for each lab:

1≤{intern(L,C) : candid(C)}≤ 5← lab(L). (2)

(Hard) constraint rules eliminate those answer sets which do not qualify as solution. For example the
constraint below prohibits the cases where a candidate is assigned to multiple labs:

← L1 6= L2, intern(L1, C), intern(L2, C). (3)

Weak constraint rules express preferences and are used for optimization. The first rule below adds 2
unit of cost (penalty) for each intern and course, if an intern has not taken a preliminary course; and the
priority of this rule is 1 (highest). The ASP solver tries to minimize the total cost in a lexicographic
manner, starting from the highest priority (1).

← intern(L, I), not taken(I, Z), prelim(Z).[2@1, I, Z] (4)

Further information about ASP can be found in [Baral2003, Gebser et al.2012, Gelfond and Kahl2014,
Lifschitz2019].
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3 Reasoning with HOPRA

Note that HOPRA already includes OPRA relations, in addition it also includes qualitative and quantita-
tive constraints about orientation, distance and location. OPRA relations are defined over the continuous
space R2 × [0, 360o). However instantiation and search for spatial variables over continuous domain
is not feasible, besides the real data from measurement devices has finite precision and location of
an extended object (like robot, ship) can be determined within some bounds. To examplify, a robot
or a ship is an extended object with a long deck, its center point is always on the water and cannot
reach the port. Hence on a continuous domain, we can never have “the ship is at the port”. Thereby
we define semantics of HOPRA relations over the discrete space. Let Ξs,t = [x1, ..., xs] × [y1, ..., yt]
be equally spaced x and y coordinate values and Φz = [f1, ..., fz] be the angular degree values. For
example, if the range in both axis is 8 km, the precision is 0.1 km and angular resolution is 2o, then
Ξ = [0, 0.1, 0.2, ..., 8.0]2 and Φ = [0, 2o, 4o, ..., 358o]. We can further represent the discrete domain by
a grid such that Ξs,t = [1, ..., s] × [1, ..., t] and Φz = [1, ..., z]. Then the domain of HOPRA relations
become Ds,t,z = Ξs,t × Φz .

We say that a given set C of HOPRA constraints are consistent over domain Ds,t,z if there is an
instantiation of variables E : V 7→ Ds,t,z which satisfies constraints in C, and we call E a solution of C.
We define the consistency checking problem H in HOPRA as deciding whether the input network C is
consistent or not.

Consistency problem of OPRA calculus itself is NP -hard and ∃R-complete [Lee2014], and it is not in
NP unless these complexity classes coincide. Theorem 1 states that complexity of consistency checking
in HOPRA is NP-complete. The reason for OPRA having higher complexity is that it is defined over
continuous space: A nondeterministic Turing machine may not search over an infinite space.
Theorem 1. The consistency checking problem H = (C, V,Ds,t,z) in HOPRA is NP-complete.

4 Reasoning with HOPRA using ASP

We first study consistency checking problem H = (C, V,Ds,t,z) in HOPRA using Answer Set Pro-
gramming. Due to limited space, we explain the core ASP rules, the full ASP code is available in the
supplementary material.

Represent the input. The input of the problem H is represented by a set of facts in ASP. An oriented
spatial object v ∈ V is represented by object(v) atom. In some domains (like surveying and our robotic
scenario), it is known that two objects are located at the same point (with or without knowing their
numerical coordinates). Hence we distinguish points and objects; and denote point identifier of an object
with another atom point(v, p). v and p are just variables and we enumerate them with 1..|V | and 1..|P |.
In general, if point location of objects are unknown, then their point identifier can be chosen the same as
the object identifier.

We encode OPRA constraints by same opra(N,K,L,I,G) , diff opra(N,K,L,I,J,G) , one sided diff opra(N,K,L,I,G)
atoms. Here N denotes the constraint number, K,L objects, I, J sectors, G granularity. Qualitative
distance relation is encoded by dist rel(N,K,L,U) where U is the relation between K,L. We repre-
sent the quantitative constraints by direction(N,K,A) , direction range(N,K,A1,A2) , direction(N,K,P,R) ,
psi precise(N,K,L,A) , psi range(N,K,L,A1,A2) , delta precise(N,K,L,A) , delta range(N,K,L,A1,A2) , location(N,K,X,Y) ,
distance(N,K,L,D) , distance range(N,K,L,D1,D2) atoms. Because a differential OPRA constraint in-
volves two different relative position information, we transform it into two single-sided constraint.
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single diff opra(N,K,L,I,G) ← diff opra(N,K,L,I,J,G) .
single diff opra(N,L,K,J,G) ← diff opra(N,K,L,I,J,G) .
single diff opra(N,K,L,I,G) ← one sided diff opra(N,K,L,I,G) .

(5)

single diff opra(N,K,L,I,G) reads as K is on sector I of L with granularity G. We process quantitative
constraints to identify location and orientation (heading) of objects.

xloc(P,X) ← point(K,P) , location(N,K,X,Y) .
yloc(P,Y) ← point(K,P) , location(N,K,X,Y) .
orient(K,A) ← direction(N,K,A) .
loc known(P) ← point(K,P) , location(N,K,X,Y) .
orient specified(K) ← direction(N,K,A) .
dist known(P,R) ← point(K,P) , point(L,R) ,

distance(N,K,L,D) .

(6)

Disjunctive Constraints. We represent uncertainity in quantitative constraints by a range of values.
Uncertainity in qualitative OPRA and distance constraints are represented by disjunctive constraints of
the form disjrelation(N,D, Y, ..) where N is the constraint ID, D is the disjunct ID, Y is the type of
the disjunctive constraint and the rest are OPRA and distance constraint parameters. We enumerate the
type of the disjunctive constraint as 0:only differential OPRA constraint, 1:only same OPRA constraint,
2:differential OPRA plus distance constraint, 3:only one-sided differential OPRA constraint, 4:one-sided
differential OPRA constraint plus distance, 5:only distance constraint.

If theN th constraint is disjunctive the rule below nondeterministically picks one disjunct and chosen(N,D)
atom indicates its index.

{chosen(N,D) : disj index(N,D)}= 1 ← existdisj(N). (7)

Then we generate the OPRA and/or distance constraint corresponding to the selected disjunct. As an
example, the rule for type 2 is given below.

diff opra(N,K,L,I,J,G) ← chosen(N,D) ,
disjrelation(N,D,2,K,L,I,J,G,U) .

dist rel(N,K,L,U) ← chosen(N,D) ,
disjrelation(N,D,2,K,L,I,J,G,U) .

(8)

Instantiation of spatial variables. A candidate solution is characterized by an instantiation of objects
u ∈ V by an oriented point in Ds,t,z . An oriented point is specified by its location and orientation. We
nondeterministically generate a location (x, y) ∈ Ξr,s on the grid for those points whose location is
unknown. Forbidden locations and obstacles are designated by invalid loc(X,Y ) atoms in the input.

{xloc(P,X) : 0≤X <r}= 1 ← not loc known(P) , point(P) .
{yloc(P,Y) : 0≤Y <s}= 1 ← not loc known(P) , point(P) .
← invalid loc(X,Y ), xloc(P,X), yloc(P, Y ).

(9)

We nondeterministically assign an orientation (heading) φ ∈ Φz to the objects whose orientation is
unknown. To examplify, if angular resolution is 3o, then possible values are {0, 3, 6, ...., 357}. For this,
we generate a value in Ω = {0, 1, 2, ...., 119} and multiply by 3.

{degree(K,E) : E ∈ Ω}= 1 ←
not orient specified(K), point(P) .

orient(K,E.Z) ← degree(K,E), angle res(Z),
not orient specified(K), point(P) .

(10)
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Next we determine which vectors and angles to compute for OPRA and quantitative constraints. We
compute the numerical distance between coordinates and find the angle ϕPR by arctangent. We represent
tan function by internal ASP atoms for example tan range(4, 0.062, 0.078) shows the range of 4o. For
differential OPRA constraints and quantitative ψ constraints, we need to compute the vectors

−→
PR,

−→
RP

and the angle of these vectors φPR, φRP .

compute vector(P,R) ← point(K,P) , point(L,R) ,
diff opra(N,K,L,I,J,G) .

xdist(P,R,X1-X2) ← xloc(P,X1) , xloc(R,X2) ,
compute vector(P,R) .

ydist(P,R,Y1-Y2) ← yloc(P,Y1) , yloc(R,Y2) ,
compute vector(P,R) .

tan(P,R,DY/DX) ← DX 6= 0,
xdist(P,R,DX) , ydist(P,R,DY) .

varphi(P,R,A) ← B≥T1, B≤T2,
tan(P,R,B) , tan range(A,T1,T2) .

(11)

OPRA Constraints. We add ASP rules to impose and process differential and same OPRA con-
straints.

Firstly, if two objects are related a same OPRA constraint then their locations must be identical. Thus
location of one of them can be deduced from the other, without loss of generality we calculate the
lower-indexed one.

xloc(P,X)← P <R, xloc(R,X),
point(K,P ), point(L,R), same opra(N,K,L,I,G) .

xloc(R,X)← P >R, xloc(P,X),
point(K,P ), point(L,R), same opra(N,K,L,I,G) .

yloc(P, Y )← P <R, yloc(R, Y ),
point(K,P ), point(L,R), same opra(N,K,L,I,G) .

yloc(R, Y )← P >R, yloc(P, Y ),
point(K,P ), point(L,R), same opra(N,K,L,I,G) .

loc known(P )← P <R, point(K,P ), point(L,R),
same opra(N,K,L,I,G) .

loc known(R)← P >R, point(K,P ), point(L,R),
same opra(N,K,L,I,G) .

(12)

For a differential OPRA constraint, if the sector is linear (even indexed), the orientation of object L can
be calculated from varphi(P,R,A) . Likewise, for a linear same OPRA constraint, orientation of one object
(the lower indexed one) can be calculated from the other.

orient(L, (A− 90.I/G)%360)← I % 2 = 0, varphi(P,R,A) ,
point(K,P) , point(L,R) , single diff opra(N,K,L,I,J,G) .

orient(K, (T − I.90/G)%360)← I % 2 = 0, L>K,
orient(L, T ), same opra(N,K,L, I,G).

orient(L, (T + I.90/G)%360)← I % 2 = 0, K >L,
orient(K,T ), same opra(N,K,L, I,G).

orient specified(L)← I % 2 = 0, single diff opra(N,K,L,I,J,G) .
orient specified(K)← I % 2 = 0, L>K, same opra(N,K,L,I,G) .
orient specified(L)← I % 2 = 0, K >L, same opra(N,K,L,I,G) .

(13)

For same OPRA constraints with angular sectors, we use the rules below to check them.

6



← I % 2 = 1, (T −B) % 360≤ (I − 1).90/G, orient(K,B) ,
orient(L,T) , same opra(N,K,L,I,G) .

← I % 2 = 1, (T −B) % 360≥ (I + 1).90/G, orient(K,B) ,
orient(L,T) , same opra(N,K,L,I,G) .

(14)

For an angular differential OPRA constraint, the guessed value of φL must be compatible with ϕLK . For
example, if ϕLK = 250o and I = 3, G= 4 then each angular segment is 45o and φL must be in the range
(250− 2× 45o, 250− 45o) = (160o, 205o). We must also handle the case when bounds are reverse (i.e.
change due to modulo 360). For example, if ϕLK = 280o and I = 13, G= 4 then φL must be in the range
(280− 7× 45o, 280− 6× 45o) = (325o, 10o). In this case, φL must not be less than 325 and greater than
10.

← I % 2 = 1, T ≤ (A− (I + 1).90/G) % 360,
(A− (I − 1).90/G) % 360> (A− (I + 1).90/G) % 360,
orient(L,T) , varphi(P,R,A) , point(K,P) ,
point(L,R) , single diff opra(N,K,L,I,G) .

← I % 2 = 1, T ≥ (A− (I − 1).90/G) % 360,
(A− (I − 1).90/G) % 360> (A− (I + 1).90/G) % 360,
orient(L,T) , varphi(P,R,A) , point(K,P) ,
point(L,R) , single diff opra(N,K,L,I,G) .

← I % 2 = 1, T ≤ (A− (I + 1).90/G) % 360,
T ≥ (A− (I − 1).90/G) % 360,
(A− (I − 1).90/G) % 360< (A− (I + 1).90/G) % 360,
orient(L,T) , varphi(P,R,A) , point(K,P) ,
point(L,R) , single diff opra(N,K,L,I,G) .

(15)

Quantitative Constraints. We process quantitative HOPRA constraints to restrict intrinsic orientation
and location of objects, using a similar method in OPRA constraints. For example, the ASP rules below
handle the φ(K), ψ(K,L), δ(K,L) constraints. In particular, in the case of a precise ψ(K,L), δ(K,L)
constraint, orientation of one object can be deduced from the other. ψ(K,L), δ(K,L) range constraints
can be imposed by ASP constraints (e.g. the last two rules).

← T <A1, orient(K,T) , direction range(N,K,A1,A2) .
← T >A2, orient(K,T) , direction range(N,K,A1,A2) .
orient specified(L) ← psi precise(N,K,L,T) .
orient specified(K)← L>K, delta precise(N,K,L,A) .
orient specified(L)← K>L, delta precise(N,K,L,A) .
orient(L, (A− T )%360)← varphi(P,R,A) ,

point(K,P) , point(L,R) , psi precise(N,K,L,T) .
orient(K, (T −A)%360)← L>K, orient(L,T) , delta precise(N,K,L,A) .
orient(L, (T +A)%360)← K>L, orient(K,T) , delta precise(N,K,L,A) .
← (T −B)%360<A1, orient(K,B) , orient(L,T) , delta range(N,K,L,A1,A2) .
← (T −B)%360>A2, orient(K,B) , orient(L,T) , delta range(N,K,L,A1,A2) .

(16)

Distance Constraints. For a qualitative distance constraint, we ensure that the numerical distance
(square) between objects is inside its interval. For a quantitative distance constraint, we check whether
the generated coordinates satisfy the numerical distance.

ndist(P,R,X2 + Y 2)← xdist(P,R,X), ydist(P,R, Y ).
← D<D1, lower bound(U,D1) , ndist(P,R,D) ,

point(K,P) , point(L,R) , dist rel(N,K,L,U) .
← D>D2, upper bound(U,D2) , ndist(P,R,D) ,

point(K,P) , point(L,R) , dist rel(N,K,L,U) .
← Y 2 6= D2 −X2, xdist(P,R,X) , ydist(P,R,Y) ,

point(K,P) , point(L,R) , distance(N,K,L,D) .

(17)
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Henceforth the ASP program Π for checking consistency of HOPRA constraints is composed of the rules
(5)-(17) and the facts that represent the input. An answer set of the program Π specifies a configuration of
oriented objects in the grid, identified by xloc(P,X), yloc(P, Y ), orient(K,A) atoms. Theorem 2 states
that Π is a sound and complete solution for H over domain Ds,t,z . However, if the resolution parameters
s, t, z are less than the sensor precision (that constraints are measured) i.e. the grid size is smaller than
actual, then theoretically Π may not yield an answer set though constraints are satisfiable (this never
happened in our experiments).
Theorem 2. Let H = (C, V,Ds,t,z) be an HOPRA consistency problem and Os,t,z denote the set of all
xloc(P,X), yloc(P, Y ), orient(K,A), point(K,P ) atoms. An assignment X from Ds,t,z to objects in
V is a solution of H if and only if X can be represented as X =Z ∩ Os,t,z for some answer set Z of Π.
Moreover, every solution of H can be represented in this form in only one way.

5 Guidance Mechanism for Solution Search

Previous on constraint-based reasoning suggests that adding some redundant constraints may be beneficial
for speeding up the search process [Barták2001, Cheng et al.1999, Karwan et al.2012, van Emden1999].
The additional constraints guide the search engine to eliminate the invalid candidates/choices for variables
and reach a solution on the search tree faster. In order to improve the computation time for HOPRA
(especially for inconsistent problem instances), we have developed an ASP subprogram with redundant
constraints to guide the search. This subprogram is oriented towards/designed for pruning candidate
solutions for angular differential OPRA constraints and quantitative ψ and distance constraints, since
these constraints are harder to check and satisfy. To our knowledge, this type of guidance mechanism is
also new in the spatial reasoning literature.

We first guide nondeterministic choice of objects’ orientation using differential OPRA constraints. If there
are two single-sided differential OPRA constraints for a symmetric pair i.e. K g1 ]

i L and L g2 ]
j K,

then the difference between orientation of objects φL− φK + 180 must lie between (90.(j−1)g2
− 90.(i+1)

g1
)

and (90.(j+1)
g2

− 90.(i−1)
g1

). Note that we must handle the case of reverse bounds separately (i.e. change
due to modulo 360).

← I%2=1, J %2=1, K >L,
(B − T + 180)%360≤ ((J − 1).90/G2)− ((I + 1).90/G1)% 360,
((J − 1).90/G2)− ((I + 1).90/G1)% 360≤
((J + 1).90/G2)− ((I − 1).90/G1)% 360,
orient(K,T) , orient(L,B) ,
single diff opra(M,K,L, I,G1), single diff opra(N,L,K, J,G2).

← I%2=1, J %2=1, K >L,
(B − T + 180)%360≥ ((J + 1).90/G2)− ((I − 1).90/G1)% 360,
((J − 1).90/G2)− ((I + 1).90/G1)% 360≤
((J + 1).90/G2)− ((I − 1).90/G1)% 360,
orient(K,T) , orient(L,B) ,
single diff opra(M,K,L, I,G1), single diff opra(N,L,K, J,G2).

← I%2=1, J %2=1, K >L,
(B − T + 180)%360≤ ((J − 1).90/G2)− ((I + 1).90/G1)% 360,
(B − T + 180)%360≥ ((J + 1).90/G2)− ((I − 1).90/G1)% 360,
((J − 1).90/G2)− ((I + 1).90/G1)% 360>
((J + 1).90/G2)− ((I − 1).90/G1)% 360,
orient(K,T) , orient(L,B) ,
single diff opra(M,K,L, I,G1), single diff opra(N,L,K, J,G2).

(18)

Next, we guide the generation of object location using differential OPRA and quantitative HOPRA
constraints. Consider a single-sided OPRA constraint K g ]i L in the input. Based on the chosen value of
φL, if the allowed x (or y) coordinate of object K, required by this OPRA constraint is to the right/left (or
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up/below) of object L, then we impose the difference between x (or y) coordinates to be positive/negative
accordingly.

← I%2=1, Y ≤ 0, ydist(K,L,Y) , (T + (I − 1).90/G)% 360≤ 180,
(T + (I + 1).90/G)% 360≤ 180,
orient(L,T) , single diff opra(N,K,L,I,G) .

← I%2=1, Y ≥ 0, ydist(K,L,Y) , (T + (I − 1).90/G)% 360≥ 180,
(T + (I + 1).90/G)% 360≥ 180,
orient(L,T) , single diff opra(N,K,L,I,G) .

(19)

and analogous rules for x axis. Using a similar idea, we guide generation of object location using
quantitative ψ(K,L) and distance constraints. Namely, if a precise ψ or range ψ constraint requires
object K to be located right/left (or up/below) of object L, then the set of rules below ensures that the x
(or y) coordinate of K is greater/less than L. In case of a distance constraint dist(K,L) = c, we ensure
that the distance over x or y axis cannot be greater than c.

← Y < 0, ydist(K,L,Y) , (T +A)% 360≤ 180,
orient(L,T) , psi precise(N,K,L,A) .

← Y > 0, ydist(K,L,Y) , (T +A)% 360≥ 180,
orient(L,T) , psi precise(N,K,L,A) .

← Y < 0, ydist(K,L,Y) ,
(T +A1)%360≤ 180, (T +A2)%360≤ 180,
orient(L,T) , psi range(N,K,L,A1,A2) .

← Y > 0, ydist(K,L,Y) ,
(T +A1)%360≥ 180, (T +A2)%360≥ 180,
orient(L,T) , psi range(N,K,L,A1,A2) .

← |Y |> 0, ydist(K,L,Y) ,
point(K,P) , point(L,R) , distance(N,K,L,D) .

(20)

and analogous rules for x axis.

Then the improved ASP program Πi for HOPRA with guidance mechanism is formed by the union of
the original ASP program Π with the rules (18)-(20).

5.1 Inferring New Knowledge

If the given information is incomplete, agents may need to deduce new knowledge. The desired relations
to infer can be specified at the input by toinfer opra(K,L,G), toinfer distrel(K,L), ... type atoms. The
unknown relations can be inferred from the generated location and orientation of objects in the answer
set. For example,

inferred orient(K,A) ← orient(K,A) , toinfer orient(K)
inferred same opra(K,L,Z/(90/G), G)←

Z%(180/G) = 0, orient diff(K,L,Z),
same loc(K,L) , toinfer opra(K,L,G) .

inferred distrel(K,L,U) ← D≥D1, D≤D2,
upper bound(U,D1), upper bound(U,D2),
ndist(P,R,D), point(K,P ), point(L,R), toinfer distrel(K,L).

(21)

Note that there may be multiple configuration of objects that satisfy the given constraints and the inferred
relations may not be unique. All possible inferred relations can be obtained by computing all answer sets
by the ASP solver.
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5.2 Explaining the Source of Inconsistency

It might be the case that the HOPRA constraints in C are inconsistent with each other, i.e. C is unsatisfi-
able. However, when we exclude some constraints from C, it may become satisfiable. In that sense, the
set of excluded constraints explain a source of inconsistency in the original set C. To identify the source
of inconsistency, we nondeterministically select which constraints to drop. drop(N) atom indicates that
the constraint with ID number N is dropped. The mandatory (non-defeasible) constraints are specified by
mandatory(N) atom in the input. Each dropped constraint adds 1 unit cost and the ASP solver tries to
minimize the total cost. We also revise the ASP rules so that the dropped constraints do not apply.

{drop(N)}≤ 1← not mandatory(N) , constraint id(N) .
∼←− drop(N) [1@1, N ].

(22)

5.3 Presumed Information

In some situations, agents might have prior or presumed information, for example the port station
knows that ship 4 planned to sail from Izmir port to Gocek Marina, so its heading is presumably to-
wards Gocek. We call these presumed HOPRA constraints. The reasoning agent should consider these
(qualitative or quantitative) presumed constraints unless they conflict with the existing HOPRA con-
straints. In this sense the presumed constraints are defeasible. We represent presumed contraints by
presumed diff opra(N,K,L,I,J,G) , presumed same opra(N,K,L,I,G) , presumed orient(N,K,A) and sim-
ilar atoms. We minimize the number of violated presumed constraints by

{violated(N)}≤ 1 ← presumed constraint id(N).
∼←− violated(N) [1@2, N ].

(23)

The priority of the weak constraint in rule (22) is higher than that of rule (23) because satisfiability of
original HOPRA constraints is more important. If the presumed constraint applies, the corresponding
atoms are generated. For example,

diff opra(N,K,L,I,J,G) ← not violated(N),
presumed diff opra(N,K,L,I,J,G) . (24)

6 Applications of HOPRA

6.1 Marine Navigation:

We first consider fleet management of a group of six vessels sailing in the Agean Sea and the port station
at Dalyan. The ships report the following data to the station Vessel 4 observes vessel 2 near and on its
starboard 147o and 2 is staying motionless at Kosedere marina. 5 reports its location is (18, 11) and he
observes 4 on its right-front. Vessel 6 reports that it is distant from the station by 20-25 km. Vessel 3
states that 5 is on its port direction between 70o − 100o, and 6 is on his behind and not near. 7 observes 6
on his clock angle 9 and very near to it.

The agent at port station also knows that vessel 6 had a plan to go to Kumburun port. Based on the
collected information, the port station wants to (1) verify that all measured data are correct and (2) find
out the orientation of vessel 3 and its position wrt 4. For this, the station agent uses the main ASP program
augmented with subprograms for inference and presumed constraints. The grid is 40x30 with angular
resolution 3o and each slot 1km. The combined program yields an answer set (Fig. 3), and from the
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inferred orient(3, 330), inferred diff opra(3, 4, 1, 4) atoms, the agent infers that 3 is moving 330o and
left-front of 4.

Figure 3: ASP output of marine navigation scenario

6.2 Cognitive Robotics:

Next we study the robotic perception problem [Moratz et al.2005, Dylla and Moratz2004, Moratz and Ragni2008],
mentioned in the introduction. The task of the robot is to navigate to the red cube behind the blue cube. To
achieve this, the robot first needs to identify which red cube is behind the blue cube (C). In this mission,
the robot makes two preceptions at point R1 and R2 with its sensor. The sensor data at these points are
stated as OPRA relations in [Moratz et al.2005] as below. Here PR denotes the object located at point P ,
oriented toward R and R P denotes the object located at point P , whose orientation is vector

−→
RP .

(R1)R1R2 4 ∠ 1R1C , R1R2 4 ∠ 1R1B1 , R1R2 4 ∠ 15R1B2

(R2)R1R2 4 ∠8
0 R1R2 , R1R2 4 ∠ 4R2C ,

R1R2 4 ∠ 1R2B1 , R1R2 4 ∠ 13R2B2

Based on preceived information, the robot must determine which object(s) are behind the cube i.e. check
whether the following (disjunctive) constraints hold: B1 4]{7,8,9} CR1 , B2 4]{7,8,9} CR1

One method to solve this problem is inference as in the first scenario, an alternative method we present
here is checking (in)consistency. We impose the physical sensor data as mandatory OPRA constraints; we
add the candidate relations above as non-mandatory constraints. Then we utilize the main ASP program
together with the subprogram for inconsistency which tries to satisfy the maximum number of constraints.
At an optimal answer set, the first disjunctive constraint is satisfied but the second is not. Thus object B1
is behind C but B2 cannot be. The layout of objects in this solution is shown below. With composition
and inversion based reasoning, [Moratz et al.2005] could not reject that B2 is behind C. This constitutes
another example that path-consistency type approaches are insufficient for OPRA . Thus our model is
better suited for checking consistency and reasoning with OPRA and HOPRA. The setup of this scenario
is also relevant in other applications such as surveying, mapping, landmark localization. An example of
surveying street networks using OPRA is [Lücke et al.2011].

7 Experimental Evaluations

We perform experiments to assess computational efficiency of our ASP formulation and observe the
impact of input size, granularity, grid and type of constraints. All tests performed on a Linux workstation
with Intel i9-9900K 3.6GHz CPU, 64GB memory using the ASP solver Clingo 5.4.0 on a single core. We
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Figure 4: ASP output of robotic perception and motion scenario

first experimented with basic OPRA constraints and original ASP program Π to evaluate performance
of consistency checking in OPRA . For a number of object (N) and constraint (C), we have created 100
consistent and 100 inconsistent random benchmark instances (samples). We set granularity (G) uniform
in an instance. Consistent problem instances are created by randomly picking location and heading of
objects on a 1000x1000 grid. The pair of objects in the constraint set are randomly chosen and OPRA
constraints are extracted from the layout. Inconsistent instances are created by assigning random OPRA
relations to those object pairs. We fixed the timeout value to 100 seconds and recorded time statistics (in
seconds) over 100 samples: Grnd shows average grounding time while Mean, Max, Std shows average,
maximum and std. deviation of solving time (grounding+search). 1 Tout denotes number of timeout
instances. S, aR denotes the grid size is SxS and angular resolution is Ro.

Table 1: Results for basic OPRA constraints with original program Π

Instance Consistent Inconsistent
N C G Grid Grnd Mean Max Std Tout Grnd Mean Max Std Tout
10 10 4 50,a3 1.31 1.66 3.63 0.41 0 0.69 8.35 94.2 21.4 11
10 10 4 100,a2 2.39 5.59 33.2 4.83 0 1.25 2.32 32.5 4.34 27
10 10 6 50,a3 1.37 2.04 5.45 0.84 0 0.69 8.78 95.9 21.8 16
10 10 6 100,a2 2.47 6.97 37.9 5.10 0 1.23 3.59 81.8 9.66 32
10 20 4 50,a3 2.81 7.16 41.2 5.29 0 1.18 1.19 3.04 0.41 0
10 20 4 100,a2 5.09 35.7 92.6 23.6 21 2.13 2.16 6.44 0.79 0
20 20 2 50,a3 2.51 3.26 8.23 0.88 0 1.40 5.88 90.3 13.5 6
20 20 4 50,a3 2.88 5.21 23.9 3.36 0 1.52 6.71 95.7 16.0 12
20 40 2 50,a3 5.09 24.64 97.5 19.6 0 2.14 2.15 4.66 0.64 1
40 40 2 50,a3 5.31 9.90 33.9 4.88 0 2.80 7.63 87.8 16.2 13
60 60 2 25,a3 7.21 8.99 15.4 1.54 0 4.01 6.81 86.9 11.2 6

Note that these are (double-sided) differential OPRA constraints, each of them actually includes two
constraints. We observe that grounding time and total computation time increase as the number of
objects, constraints, granularity and grid size increase. In general, the computation time and timeout
values for inconsistent instances are greater compared to consistent instances. This is mainly because
it is sufficient to find one combination to reach consistent outcome whereas the solver needs to search
many combinations on the search tree to decide inconsistency. Notice that the computation time for
inconsistent instances are lower than consistent instances when the number of constraints or granularity is
large. Our interpretation is that since constraints for inconsistent instances are randomly generated, it is
relatively easier to detect conflicts between them, when the constraints are dense (number) or they are
fine (granularity).

To assess the benefit of subprogram for guidance (in Section 5), we tested the same instances with ASP
program Πi. Comparing the results in Table 1 and 2 reveal that addition of subprogram for guidance
increases grounding time a little (due to additional constraints), but the search is much faster, thus the net
effect is lower computation time on average. Now inconsistency is determined faster than consistency
since guidance rules makes conflict detection easier. Note that with guidance, the maximum computation

1Timed-out instances were not counted in calculting statistics in the tables
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time and timeout instances are also lower, in general.

Table 2: Effect of Guidance: Basic OPRA constraints with Πi

Instance Consistent Inconsistent
N C G Grid Grnd Mean Max Std Tout Grnd Mean Max Std Tout
10 10 4 50,a3 1.93 2.00 2.63 0.14 0 0.86 1.62 29.8 3.03 11
10 10 4 100,a2 4.09 4.50 5.78 0.43 0 1.75 4.10 86.4 9.39 14
10 10 6 50,a3 2.01 2.13 3.11 0.19 0 0.98 5.80 37.3 13.4 1
10 10 6 100,a2 4.25 4.80 9.46 0.79 0 1.83 3.73 35.5 6.65 15
10 20 4 50,a3 3.83 4.35 8.87 0.73 0 1.38 1.39 4.15 0.58 0
10 20 4 100,a2 7.82 10.7 35.2 3.73 0 2.69 2.84 10.5 1.60 0
20 20 2 50,a3 3.55 3.75 4.52 0.18 0 1.62 1.85 7.77 1.08 11
20 20 4 50,a3 4.09 4.39 7.04 0.35 0 1.94 2.49 12.0 1.94 5
20 40 2 50,a3 6.93 8.87 24.8 2.43 0 2.44 2.46 5.87 0.85 1
40 40 2 50,a3 7.41 8.19 10.6 0.41 0 3.34 4.92 37.9 5.04 10
60 60 2 25,a3 9.24 9.68 10.8 0.23 0 4.61 6.44 91.4 8.33 7
60 80 2 25,a3 12.4 14.8 31.9 2.87 0 5.32 5.80 37.7 3.90 1

Next we make experiments to observe the impact of qualitative distance constraints, we use the improved
ASP program Πi. For each pair, we add the distance constraint to the constraint set. For a consistent
instance, we extract the distance relation from the layout and add to the constraint set. For inconsistent
instance, we randomly pick the distance relation. In general, computation timings are higher compared to
Table 2, due to additional overhead of checking distance constraints.

Table 3: Results for basic OPRA and qualitative distance constraints

Instance Consistent Inconsistent
N C G Grid Grnd Mean Max Std Tout Grnd Mean Max Std Tout
10 10 6 50,a3 2.40 2.66 4.12 0.30 0 1.06 5.85 67.8 13.6 6
10 20 4 50,a3 4.54 6.34 32.3 2.96 0 1.51 1.53 4.86 0.69 0
20 20 2 50,a3 4.13 4.91 13.0 1.12 0 1.87 10.1 97.0 21.5 12
20 20 4 50,a3 4.84 5.96 29.1 2.54 0 2.13 6.69 98.2 14.2 8
20 40 2 50,a3 8.27 22.0 76.8 14.6 6 2.70 2.73 8.08 1.10 1
40 40 2 50,a3 8.71 13.3 33.0 4.47 0 3.53 7.20 66.1 13.3 21

We also experiment with disjunctive OPRA constraints. We have used program Πi and created problem
instances as follows: We take a basic (in)consistent instance for a parameter combination N,C,G and
convert %20 or %40 of the constraints into disjunctive constraints. 4x8 denotes that there are 4 disjunctive
constraints, each having 8 disjuncts. For the disjuncts, we keep the original basic relation and add other
randomly generated basic OPRA relations as disjuncts. This manner we have created 100 consistent and
100 inconsistent instances with disjunctive constraints. In experiments, grid size is 50x50 and angular
resolution is 3o. With disjunctive constraints, computation time increases but not very large.

Table 4: Results for disjunctive OPRA constraints

Instance Consistent Inconsistent
N C G Disj Grnd Mean Max Std Tout Grnd Mean Max Std Tout
20 20 4 4x2 4.76 5.46 20.2 1.35 0 2.64 6.56 96.6 14.3 8
20 20 4 4x4 5.93 6.35 10.1 1.01 0 3.56 6.45 66.4 9.06 11
20 20 4 4x8 8.78 9.34 18.9 2.46 0 5.48 11.2 85.7 17.3 11
20 20 4 8x2 5.34 5.95 10.7 0.88 0 3.20 6.56 48.5 8.30 11
20 20 4 8x4 7.85 8.87 33.8 2.95 0 5.44 12.4 93.4 18.2 17
20 20 4 8x8 13.4 14.3 30.8 4.25 0 10.5 14.6 54.6 10.4 11
40 40 2 8x2 8.31 9.38 13.8 0.74 0 4.47 6.15 50.2 6.53 16
40 40 2 8x4 9.53 10.5 14.4 0.86 0 5.68 9.05 86.3 12.4 12
40 40 2 8x8 13.5 15.1 82.4 8.57 0 7.49 10.7 96.9 12.3 12
40 40 2 16x2 8.88 10.2 14.9 1.10 0 5.57 7.26 30.9 5.13 19
40 40 2 16x4 11.7 13.0 22.8 1.61 0 8.18 10.9 66.1 8.62 9
40 40 2 16x8 16.0 17.3 39.1 3.01 0 12.8 14.2 34.1 5.21 8

We have performed experiments for quantitative HOPRA constraints, in particular orientation constraints
φ(K) = ao. We have created problem instances as follows: We take a basic consistent or inconsistent
instance with only OPRA constraints for a parameter combination N,C,G. Then for every object, we add
its precise numerical orientation to the constraint set. For a consistent instance, we extract the numerical
orientation from the layout and add to the constraint set. For inconsistent instance, we randomly assign
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an orientation in range [0,359]. The results in Table 5 are comparable and similar to Table 2. The reason
is that, with quantitative information, the solver does not need to guess the orientation of objects; but now
it has to find object locations in order to match to the exogenously given orientations, wrt OPRA relation
sectors. These two effects seem to neutralize each other.

Table 5: Results for basic OPRA constraints with quantitative orientation constraints

Instance Consistent Inconsistent
N C G Grid Grnd Mean Max Std Tout Grnd Mean Max Std Tout
20 20 2 50,a3 3.67 3.87 4.57 0.22 0 1.77 5.82 82.8 17.3 11
20 20 4 50,a3 4.33 4.70 5.75 0.36 0 2.10 3.08 22.8 4.48 12
20 40 2 50,a3 7.47 9.86 24.1 3.34 0 2.63 2.69 6.44 1.13 0
20 40 4 50,a3 8.77 13.6 28.4 4.93 0 3.08 3.11 6.80 1.28 0
40 40 2 50,a3 7.72 8.58 9.79 0.46 0 3.23 3.88 9.54 2.16 3
40 40 4 50,a3 8.90 10.4 14.9 1.22 0 3.88 5.25 28.5 5.43 4

8 Related Literature

OPRA has been applied to robotic motion [Glez-Cabrera et al.2013], marine navigation [Dylla et al.2007],
topological map learning [Wallgrün2010], surveying [Lücke et al.2011]. However reasoning with OPRA
is NP-hard [Wolter and Lee2010] and currently there is no mechanism that can decide consistency of
even basic OPRA constraints. Existing tools use composition and path-consistency for reasoning which
is incomplete [Mossakowski and Moratz2010] and cannot generate configuration of objects.

Answer Set Programming has been applied to spatial reasoning [Baryannis et al.2018, Baryannis et al.2020,
Brenton et al.2016, Li2012]. However these approaches are based on path-consistency and do not involve
commonsense knowledge or assumptions. [Izmirlioglu and Erdem2023] has proposed a framework for
reasoning with direction of extended objects using cardinal directions (north, east, southwest), but the
objects are stationary and do not have an intrinsic orientation. Furthermore their setup is purely qualitative
and does not include distance or location information. ASP has not yet been applied to OPRA or distance
calculus.

9 Conclusion

Spatial reasoning about orientation and position is beneficial for cognitive robotics, land, marine, UAV
navigation, surveying and localization applications. In these domains metric data can be utilized in
reasoning when available. Additionally, qualitative or coarse spatial information is also relevant because
human agents tend to use symbolic terms of natural language; moreover spatial data obtained from
sensors may be imprecise. In this paper, we have proposed a new hybrid formalism HOPRA for position,
orientation, distance and an ASP-based framework for reasoning. This framework can solve consistency
problem of OPRA , and incorporate distance and quantitative constraints to it; the existing literature does
not have solution to these problems. We have also examplified a guidance mechanism (Section 5) for a
spatial reasoning problem to improve the pruning and search process for reaching a solution faster.

References

[Baral2003] Chitta Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, New York, NY, USA, 2003.

14



[Barták2001] Roman Barták. Theory and practice of constraint propagation. In Proceedings of the 3rd
Workshop on Constraint Programming in Decision and Control, volume 50, 2001.

[Baryannis et al.2018] George Baryannis, Ilias Tachmazidis, Sotiris Batsakis, Grigoris Antoniou, Mario
Alviano, Timos Sellis, and Pei-Wei Tsai. A trajectory calculus for qualitative spatial reasoning using
answer set programming. Theory and Practice of Logic Programming, 18(3-4):355–371, 2018.

[Baryannis et al.2020] George Baryannis, Ilias Tachmazidis, Sotiris Batsakis, Grigoris Antoniou, Mario
Alviano, and Emmanuel Papadakis. A generalised approach for encoding and reasoning with qualitative
theories in answer set programming. Theory and Practice of Logic Programming, 20(5):687–702,
2020.

[Brenton et al.2016] Christopher Brenton, Wolfgang Faber, and Sotiris Batsakis. Answer set program-
ming for qualitative spatio-temporal reasoning: Methods and experiments. In OASICS-OpenAccess
Series in Informatics, volume 52. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[Cheng et al.1999] BMW Cheng, Kenneth M. F. Choi, Jimmy Ho-Man Lee, and JCK Wu. Increasing
constraint propagation by redundant modeling: an experience report. Constraints, 4:167–192, 1999.

[Clementini et al.1997] Eliseo Clementini, Paolino Di Felice, and Daniel Hernández. Qualitative
representation of positional information. Artificial intelligence, 95(2):317–356, 1997.

[Dylla and Moratz2004] Frank Dylla and Reinhard Moratz. Empirical complexity issues of practical
qualitative spatial reasoning about relative position. In Workshop on Spatial and Temporal Reasoning
at ECAI, volume 2004, 2004.

[Dylla et al.2007] Frank Dylla, Lutz Frommberger, Jan Oliver Wallgrün, Diedrich Wolter, Berhard Nebel,
and Stefan Wölfl. Sailaway: Formalizing navigation rules. In Proceedings of the Artificial and
Ambient Intelligence Symposium on Spatial Reasoning and Communication, AISB, volume 7, pages
1–5, 2007.

[Frommberger2008] Lutz Frommberger. Learning to behave in space: A qualitative spatial representation
for robot navigation with reinforcement learning. International Journal on Artificial Intelligence Tools,
17(03):465–482, 2008.

[Gebser et al.2012] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer
Set Solving in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2012.

[Gelfond and Kahl2014] Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and
the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, New York, NY, USA, 2014.

[Gelfond and Lifschitz1988] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proc. of ICLP, pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz1991] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic
programs and disjunctive databases. New generation computing, 9(3-4):365–385, 1991.

[Glez-Cabrera et al.2013] Francisco J Glez-Cabrera, José Vicente Álvarez-Bravo, and Fernando Dı́az.
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