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Abstract. In this paper, we study the problem of maximizing a nonmonotone
one-sided-η smooth (OSS for short) function ψ(x) under a downwards-closed
convex polytope constraint. The concept of OSS was first proposed by Mehrdad
et al. [1, 2] to express the properties of multilinear extension of some set function-
s. It is a generalization of the continuous DR submodular function. The OSS
property guarantees an alternative bound based on Taylor expansion. If the ob-
jective function is nonmonotone diminishing return (DR) submodular, Bian et
al. [3] gave a 1/e approximation algorithm with a regret bound O(LD

2

2K
). On

general convex sets, Dürr et al. [4] gave a 1

3
√
3

approximation solution with

O( LD2

(lnK)2
) regrets. In this paper, we consider maximizing the more generalOSS

function, and by adjusting the iterative step of the Jump-Start Frank Wolfe algo-
rithm, an approximation of 1/e can still be obtained in the case of a larger re-
gret bound O(L(µD)2

2K
). (where L, µ,D are some parameters, see Table 1). The

larger the parameter η we choose, the more regrets we will receive, because of

µ =
(

β
β+1

)−2η

(β ∈ (0, 1]).

Keywords: approximation algorithm · one-sided smooth · nonmonotone · Frank
Wolfe

1 Introduction

The concept of one-sided-smooth OSS was first proposed by Mehrdad et al. [1, 2] to
express the properties of multilinear continuous extension of set functions or nonconvex
functions. For example, the diminishing return (DR) submodular function is a case
where η = 0 , the multilinear extension [5] of proportionally submodular funtions is
the case of η = 1, the multilinear extension of the diversity functions is a more general
case (η = 1, 2, 3...) [1]. One-sided η-smooth functions have an important position in
many fields, such as web search [6], machine learning [7, 8], document aggregation [9],
recommender systems [10, 11].
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A function ψ is one-sided-smooth if

1

2
vT∇2ψ(x)v ≤ η · ‖v‖1‖x‖1

vT∇ψ(x)

for all x, v ≥ 0, x 6= 0. In this paper, we discuss a nonmonotone OSS function maximization
problem:

maxψ(x)

s.t. x ∈ [0, 1]n, x ∈ P (1)

where P is a downwards-closed convex polytope, and it has a upper bound vector $ (i.e. any
x ∈ P, x ≤ $). ψ : [0, 1]n → R+ is a nonnegative nonmonotone normalized OSS function.
Next, we define the regret function for the OSS maximization problem

r ·max
x∈P

ψ(x)− ψ(xK) ≤ π(K), (2)

where r is the approximate ratio, π(K) is the regret function, K is the number of iterations.
Similar to Lipschitz smoothness [12], one-sided-smoothness can control the approximation

ratio and the complexity of related algorithms. The main method to solve the above problem is
continuous greedy. The core of continuous greedy is to maximize the multilinear extension func-
tion. Submodularity has some beautiful properties for the multilinear continuous extension. For
example, monotone concavity along a fixed direction. The property was often used to bound a
Taylor expansion in algorithm analysis. Since nonsubmodular multilinear extensions don’t have
this property, Mehrdad et al proposed a ”OSS property” condition to propose an alternative
bound based on Taylor series. When theOSS function is monotone, Mehrdad et al. [2] provided a
tight (1− 1/e(1−β)(β/(β+1))2η ) approximation for the maximization problem under downwards-
closed convex polytope constraint. For the nonmonotone OSS maximization problem, the re-
search of the algorithm mainly focus on the nonmonotone DR-submodular maximization prob-
lem, that is η = 0. It is difficult to maximize a non-monotone continuous DR-submodular func-
tions. Bian et al and Niazadeh et al.[13, 14] have given methods to maximize non-monotone
diminishing return (DR) submodular functions and they got the same 1/2-approximation guaran-
tee. Both algorithms come from the double greedy framworks in [15, 16]. In 2019, Bian et al. [3]
provided a 1/e approximation algorithm on downwards-closed convex sets. For general convex
sets containing origin, Dürr et al. [4] gave a 1

3
√
3

approximation solution.
In order to optimize the more general problems (i.e. η > 0), we propose a nonmonotone

Frank Wolfe method. This method comes from the technique of solving convex optimization
problems [17, 18], and has been widely introduced into the research of submodular optimiza-
tion and machine learning problems [12, 19]. The core of the Frank Wolfe is to approximate
the original function by a linear gradient function at each iteration point xk. If the objective
function is monotone, then the gradient function is nonnegative and it was often used to an-
alyze the approximate solution [20]. However, it is not useful for the nonmonotone case. To
overcome this problem, we use several optimization tools that include the OSS function is
(θ,$)-continuous, gradient is µ-bounded. The above two optimization tools help us establish
the connection between two adjacent iteration points and the optimal solution (i.e. ψ(xk+1) ≥
(1 − ρ)ψ(xk) + ρ(1 − ρµ2)t

k/ρµ2

ψ(z∗) − L(Dρµ)2

2
, The notations used see Table 1). This

connection is very helpful for our design of nonmonotone Frank Wolfe algorithm for OSS max-
imization problems.
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Main Contributions: This paper mainly studies whether the approximate ratio 1/e can be
guaranteed theoretically under the generalOSS maximization problem. We design the nonmono-
tone Jump-Start Frank Wolfe (JSFK) algorithm by applying several techniques, including Jump-
Start, nonmonotone Frank-Wolfe, (θ,$)-continuous, µ-bounded gradient. JSFK algorithm iter-
ates by constantly accessing the optimal linear gradient function dT∇ψ(x) (d ∈ P, d ≤ $− x),
and finally outputs the solution. We theoretically prove that JSFK algorithm has a 1/e approxi-
mation ratio with a regret O(L(µD)2

2K
) for any OSS function maximization problem, and it needs

at least O(K) iterations. Because µ =
(

β
β+1

)−2η

, we choose the larger parameter η, the algo-
rithm will receive the more regret (ie, the result of the algorithm will get worse as the parameter
increases).

Main differences and limitations: In this paper, our main work is to extend the study of
nonmonotone continuous DR-submodular functions under the same approximation ratio guar-
antee. The analysis idea of the algorithm comes from the Algorithm 2 (in [3]) and Algorithm 1
(in [4]), but there are essential differences and limitations.

– Main differences:
• The analysis of Algorithm 2 (in [3]) and Algorithm 1 (in [4]) strictly depends on the

concaveness in the nonnegative direction of the continuous DR-submodular function.
• Our algorithm iterates from a non-zero point. (It is possible to set the polyhedron con-

straint to not contain the origin, unless for some k, xk ≥ z∗ hold, where z∗ denotes the
optimal solution).

– Limitations:
• The analysis of our algorithm requires stronger gradient conditions: µ-bounded contin-

uous.
• Compared with Algorithm 2 (in [3]), the Jump-Start Frank Wolfe algorithm need to pay

more regrets to obtain the same approximate ratio.
• If the parameter η is too large, the optimization model and its algorithm that we study

are meaningless

1.1 Organization

The remainder of this paper is organized as follows. Section 2 introduced some definitions and
necessary lemmas for the later algorithm designs. In Section 3 , a nonmonotone algorithm are
proposed for the deterministic nonmonotone OSS problem. The corresponding theoretical anal-
ysis for their efficiency are also provided. The last section concludes this work.

2 Preliminaries

The notations used in this paper are lised in Table 1.
In this section, we would offer some notations and definitions, which are used throughout the

whole paper. Let ψ be a normalized, nonnegative OSS function. For ∀u, u′ ∈ [0, 1]n, u ≤ u′ if
and only if ui ≤ u′i holds. u ∨ u′ denotes the coordinate-wise maximum of u and u′, and u ∧ u′
denotes the coordinate-wise minimum.

Definition 1. Down-closed: For ∀x ∈ P, if 0 ≤ x′ ≤ x, then x′ ∈ P.

To obtain a constant approximation ratio in polynomial time, the constraint set needs to have
the property of downwards-closed. Therefor the downwards-closed condition is very important
for approximation algorithms analysis process.
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Table 1. Symbol Description

β, η, ε : Some parameters greater than zero are given in advance;

µ : µ =
(

β
β+1

)−2η

P : Polyhedron: such as linear function polyhedron Ax ≤ b, matrix
polyhedron, etc.;

$ : The upper bound vector of x ∈ P ;

u : A vector belongs to [0, 1]n;

D : The diameter of P , where D := maxx,x′∈P ‖x− x′‖, and D ≤ ‖$‖ ;

L : The Lipschitz parameter.

Lemma 1. ([2]) ψ : [0, 1]n → R+ is OSS on [x, x+ εv], then we have

vT∇ψ(x+ εv) ≤
(
‖x+ εv‖1
‖x‖1

)2η

vT∇ψ(x). (3)

where x, v ∈ [0, 1]n, x 6= 0 and ε > 0 such that (x+ εv) ∈ [0, 1]n.

Definition 2. ([21]) Lipschitz smooth: A gradient function ψ : [0, 1]n → R is Lipschitz smooth
if for all x, y ∈ [0, 1]n, it holds that

‖∇ψ(x)−∇ψ(x′)‖ ≤ L‖x− x′‖. (4)

Lemma 2. A gradient function ψ : [0, 1]n → R has L-Lipschitz gradients if for all x, x′ ∈
[0, 1]n, then we have

|ψ(x′)− ψ(x)− 〈∇ψ(x), x′ − x〉| ≤ L

2
‖x′ − x‖2. (5)

We defer to the proofs to the full version.
In order to obtain the convergence approximation solution, we need the gradient function to

be Lipschitz continuous. In addition, in order to overcome the difficulties caused by the nonmono-
tone property of the objective function, the objective function also needs to satisfy the following
two conditions.

Definition 3. (θ,$)-continuous: Given θ ∈ [0, $] (where$ is the upper bound vector of x ∈ P
). Then a function ψ : [0, 1]n → R+ is (θ,$)-continuous if for any x ∈ [0, θ], y ∈ P, the
following inequality

ψ(x ∨ y) ≥

(
1−

[
min
i∈[n]

$i

θi

]−1
)
ψ(y). (6)

holds.

Definition 4. µ-bounded continuous: A gradient function ∇ψ(x) : [0, 1]n → R is µ-bounded
continuous if for any x, y, y′ ∈ P, the following inequality holds

|〈∇ψ(x), y〉| ≤ µ · |〈∇ψ(x), y′〉| (7)

where µ =
(

β
β+1

)−2η

.
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The gradient function with a µ-bound provides a bound for the variation of the gradient
function to avoid the function being too singular.

Definition 5. ([22]) Continuous DR-submodular functions: A continuously twice differentiable
function ψ : Rn≥0 → R+ is DR-submodular if it satisfies

ψ(kei + x)− ψ(x) ≥ ψ((k + l)ei + x)− ψ(lei + x),

where k, l ∈ R+ and x, (kei + x), ((k + l)ei + x) ∈ Rn≥0.

Lemma 3. Any continuous DR-submodular function is 0-OSS (e.g. Multilinear extension of
submodular set functions)

Proof. In paper [22], Bian et.al. proposed the second-order condition of continuousDR-submodular
function: a continuously twice differentiable function ψ : Rn≥0 → R+ is DR-submodular if and
only if

∂2ψ

∂xi∂xj
≤ 0, ∀i, j ∈ [n].

Next, let A denote the second-order Hessian matrix of the DR-submodular function, we get
Aij ≤ 0 for any i, j ∈ [n]. then for any vector x = (x1, ..., xn)T ≥ 0, the following inequality
holds

xTAx = x21A11+, ...,+x1xnAn1

+x21A12+, ...,+x1xnAn2

+, ...,

+x21A1n+, ...,+x1xnAnn

≤ 0.

So continuous DR-submodular function is one-sided 0−smooth ut

Submodularity has some beautiful properties for the multilinear continuous extension. For
example, monotone concavity along a fixed direction. The property was often used to bound a
Taylor expansion in algorithm analysis. Next we need consider some questions: no monotonic-
ity? no submodularity? no unidirectional concave? Mehrdad et al. proposed a ”OSS-property”
condition which guarantees an alternative bound based on Taylor series. But they did not consider
the case where the function is nonmonotone.

3 Jump-Start Frank Wolfe Algorithm for nonmonotone Setting

For the nonmonotone OSS problems, we propose Jump-Start Frank Wolfe algorithm, our al-
gorithm mainly uses the Frank Wolfe skill in convex optimization. That is, the following linear
optimization problem is solved in each iteration of the algorithm

max
d∈P

dT∇ψ(xk).

The algorithm can be briefly described in three parts:
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(i) Choose an initial feasible solution

x0 = β arg max
x∈P,x≤$

‖x‖1, β → 0, β ∈ [0, 1),

(ii) Identify the Iteration direction by Frank Wolfe skill,
(iii) Travel an acceptable distance in the selected direction.
In Algorithm 1, tk is the cumulative step size. When tk = 1, xK is the convex combination

of feasible solutions. xK must be a feasible solution. $ is used to bound the growth of xk (For

any k < K, we can get xk ≤ $[1− (1− ρµ2)t
k/ρµ2

]), where µ =
(

β
β+1

)−2η

. The following
is a specific analysis.

Algorithm 1 JSFW: Jump-Start Frank Wolfe Algorithm(ψ,P, β, η,K,$)
Input: η-OSS function ψ : [0, 1]n ∩ P → R+; P: down-closed convex polytope; $: the given
bounded vector (i.e. for any x ∈ P, x ≤ $ holds).
Parameter: β ∈ (0, 1], η ≥ 0, step size ρ = 1/K, K ≈ O(n2). Let µ = (β/β + 1)−2η .
Output: xK .
1: t0 → β.
2: k = 0.
3: x0 = β arg maxx∈P,x≤$ ‖x‖1.
4: while tk < 1, do
5: dk = arg maxd∈P,d≤$−xk d

T∇ψ(xk), ρk = min
{
ρ, 1− tk

}
,

6: xk+1 = xk + µ2ρkd
k, tk+1 = tk + µ2ρk,

7: k ← k + 1.
8: end while

Lemma 4. Assume x0 = β arg maxx∈P,x≤$ ‖x‖1. For any k < K, it holds,

xk ≤ $
[
1−

(
1− ρµ2)tk/ρµ2

]
, (8)

where µ =
(

β
β+1

)−2η

.

We defer to the proofs to the full version.

Lemma 5. Let z∗ denote the optimal solution, then for all xk in Algorithm 1, we have

ψ(xk ∨ z∗)− ψ(xk) ≤ µ|(xk ∨ z∗ − xk)T∇ψ(xk)|. (9)

We defer to the proofs to the full version.

Lemma 6. For any k < K, the following inequality holds

ψ(xk+1) ≥ (1− ρ)ψ(xk) + ρ(1− ρµ2)t
k/ρµ2

ψ(z∗)− L(Dρµ)2

2
, (10)

where µ =
(

β
β+1

)−2η

, z∗ denotes the optimal solution.
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Proof. Let lk := xk ∨ z∗ − xk, then the following two conditions hold
1) lk ≤ $ − xk;
2) lk ∈ P. (Since property of downwards-closed.)
So lk is a feasible solution in Algorithm 1). Because ∇ψ(x) is Lipschitz continuous, from

Lemma 2, we have

ψ(xk+1)− ψ(xk) ≥ ρµ2〈∇ψ(xk), dk〉 − L(ρµ2)2

2
‖dk‖2

(D : The diameter of P)

≥ ρµ2〈∇ψ(xk), dk〉 − L(ρµ2)2

2
D2

(dk is an ascending direction)

≥ ρµ2|〈∇ψ(xk), dk〉| − L(ρµ2)2

2
D2

(By the µ− bounded)

≥ ρµ|〈∇ψ(xk), lk〉| − L(ρµ)2

2
D2

= ρµ|〈∇ψ(xk), xk ∨ z∗ − xk〉| − L(ρµ)2

2
D2

(By the Lemma 5)

≥ ρµ[ψ(xk ∨ z∗)− ψ(xk)] · µ−1 − L(ρµ)2

2
D2

(By the (θ,$)− continuity and

λ = min
i∈[n]

$i

θi
)

≥ ρ[

(
1− 1

λ

)
ψ(z∗)− ψ(xk)]− L(ρµ)2

2
D2

(
θ := $

[
1−

(
1− ρµ2)tk/ρµ2

])
= ρ[(1− ρµ)t

k/ρµ2

ψ(z∗)− ψ(xk)]− L(ρµ2)2

2
D2.

Hence

ψ(xk+1) ≥ (1− ρ)ψ(xk) + ρ(1− ρµ2)t
k/ρµ2

ψ(z∗)− L(Dρµ)2

2
.

ut

Theorem 1. Consider Algorithm 1 with uniform step size ρ. For k = 1, ...,K it holds that

ψ(xk+1) ≥ tk+1e−t
k+1

ψ(z∗)− (k + 1)L

2
(ρµD)2 −O(ρ2)ψ(z∗). (11)

The larger the parameter η we choose, the more regrets we will receive, because of µ =(
β
β+1

)−2η

(β ∈ (0, 1]).

Proof. Firstly, it holds when k = 0 (notice that t0 = β → 0). Assume that it holds for k. Then
for k + 1, from 0 ≤ ρµ ≤ t ≤ 1 and Lemma 6, we get
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ψ(xk+1) ≥ (1− ρ)ψ(xk) + ρ(1− ρµ2)t
k/ρµ2

ψ(z∗)− LD2

2
ρ2µ2

(Because e−t −O(ρµ2) ≤ (1− ρµ2)t/ρµ
2

)

≥ (1− ρ)ψ(xk) + ρ
[
e−t

k

−O(ρµ2)
]
ψ(z∗)− LD2

2
ρ2µ2

≥ (1− ρ)

[
tke−t

k

ψ(z∗)− kL

2
(ρµD)2 −O(ρ2)ψ(z∗)

]
+ρ
[
e−t

k

−O(ρµ2)
]
ψ(z∗)− LD2

2
ρ2µ2

=
[
(1− ρ)tke−t

k

+ ρe−t
k
]
ψ(z∗)− (ρµD)2L

2
[(1− ρ)k + 1]

−[(1− ρ)O(ρ2) + ρO(ρµ2)]ψ(z∗)

≥
[
(1− ρ)tke−t

k

+ ρe−t
k
]
ψ(z∗)− (k + 1)(ρµD)2L

2

−O(ρ2)ψ(z∗).

Next, let g(t) = te−t, the function is is monotonically increasing in [0, 1] and g(t + ρ) −
g(t) ≤ ρg′(t). Then we get

[
(1− ρ)tke−t

k

+ ρe−t
k
]
ψ(z∗)

≥ (tk + ρ)e−(tk+ρ)ψ(z∗)

≥ (tk + ρµ2)e−(tk+ρµ2)ψ(z∗)

= (tk+1)e−(tk+1)ψ(z∗).

So the Theorem 1 holds, that is

ψ(xk+1) ≥ tk+1e−t
k+1

ψ(z∗)− (k + 1)L

2
(ρµD)2 −O(ρ2)ψ(z∗)

The algorithm termination condition is t = 1, and we need about O(Ln2) number of iterations,
when the algorithm terminates, we can get the following solution

ψ(xout) ≥ e−1OPT − L(µD)2

2K
−O(ρ2)ψ(z∗).

Because µ =
(

β
β+1

)−2η

, we choose the larger parameter η, the algorithm will receive
the more regret (ie, the result of the algorithm will get worse as the parameter increases). Most
of OSS problems are continuous, and our algorithms can be applied directly. However, if the
optimization problems are discrete, then we need to round the corresponding non-discrete results.
Generally, the traditional rounding techniques mentioned in the paper [2] are all available, the
rounding solution will have a loss.
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4 Conclusion

In this paper, we design a nonmonotone Jump Start Frank Wolfe algorithm for nonmonotone
OSS maximization problem with a down-closed convex polytope constraint. Our algorithm ob-

tains a e−1-approximation solution with a L(µD)2

2K
(where µ =

(
β
β+1

)−2η

) regret. If η = 0, the
result is same as the nonmonotone DR-submodular maximization problem in [5] and the result
may not be tight. In order to get the convergent approximation solution, the algorithm requires at
least O(K) iterations. We choose the larger parameter η, the algorithm will receive more regret.
Our paper also provides a good tool to maximize the multilinear extension of some nonmonotone
set functions.
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