Download PDFOpen PDF in browser地域への感染者流入リスクと新型コロナウイルス感染の影響評価EasyChair Preprint 50857 pages•Date: March 1, 2021Abstract本論文では,新型コロナウイルス感染症の感染予測に関して,モバイル統計情報と機械学習を用いた,流入リスクを考慮した新たなSEIRモデルを提案する.本モデルによって,地域における精度の高い感染者予測が可能となり,札幌市と東京都での推定を行った結果では,1.2人/日という高い予測精度を示すことができる.このモデルを用いて,札幌市への流入リスクの影響を分析し,夏以降の流入者数を制限できていれば,11月の感染拡大は半分以下に抑えることができた可能性があることを示す.また,首都圏の緊急事態宣言で呼び掛けられている感染予防策について検証を行う.そして,東京近郊市街地を対象とした個体ベースモデルから得た感染予防策の実効再生産数減少率を用い,SEIRモデルでの1ヶ月後予測を行うことで,飲食店の時短強化よりも飛沫防止策の徹底やテレワーク,イベント制限などとの総合的な対策が大きな効果を示すことを明らかにする. Keyphrases: COVID-19, SEIRモデル, 個体ベースモデル, 流入リスク, 逆シミュレーション最適化
|