Download PDFOpen PDF in browserA New Approach in High Precision Bone Surgery: Semi-Automatic Alignment of an Application-Specific Instrument Guide Adjusted by a Smart Screwdriver7 pages•Published: June 13, 2017AbstractRobotic surgical systems reduce the cognitive workload of the surgeon by assisting in guidance and operational tasks. As a result, higher precision and a decreased surgery time are achieved, while human errors are minimised. However, most of robotic systems are expensive, bulky and limited to specific applications.In this paper a novel semi-automatic robotic system is evaluated that offers the high accuracies of robotic surgery while remaining small, universally applicable and easy to use. The system is composed of a universally applicable handheld device, called Smart Screwdriver (SSD) and an application specific kinematic chain serving as a tool guide. The guide mechanism is equipped with motion screws. By inserting the SSD into a screw head, the screw is identified automatically and the required number of revolutions is executed to achieve the desired pose of the tool guide. The usability of the system was evaluated according to IEC 60601-1-6 using pedicle screw implementation as an example. The achieved positioning accuracies of the drill sleeve were comparable to those of SpineAssist from Mazor Robotics Ltd., Caesarea (IL) with -0.54 ± 0.93 mm (max: 2.08 mm) in medial/lateral-direction and 0.17 ± 0.51 mm (max: 1.39 mm) in cranial/caudal-direction in the pedicle isthmus. Additionally, the system is cost-efficient, safe, easy to integrate in the surgical workflow and universally applicable to applications in which a static position in one or more DOF is to be adjusted. Keyphrases: handheld device, instrument guidance, instrument guide, kinematics, modularisation, pedicle screw, robotics, semi active, semi automatic, semiactive, smart screwdriver, spinepilot, tool guidance, tool guide In: Klaus Radermacher and Ferdinando Rodriguez Y Baena (editors). CAOS 2017. 17th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery, vol 1, pages 114-120.
|